Instant

ARCADE GAMES
for the

Instant Arcade Games
tor the

Dragon

Jean Frost

Pan Books London and Sydney

First published 1983 by Pan Books Ltd,
Cavaye Place, London SW10 9PG

in association with Personal Computer News
987654321

©) Jean Frost 1983

ISBN 0330 28271 9

Printed and bound in Great Britain by
Richard Clay (The Chaucer Press) Ltd, Bungay, Suffolk

This book is sold subject to the condition that it shall not,

by way of trade or otherwise, be lent, re-sold,

hired out. or otherwise circulated without the publisher’s prior consent
in any form of binding or cover other than that in which it is

published and without a similar condition including

this condition being imposed on the subsequent purchase.

CONTENTS

Preface
1 BASIC and Games, Comp s and Ch k
2 Building Blocks, an Example Construction
3 Arcade Games, a Selection of Lego Bricks
3.1 Instructions
3.2 Backgrounds
3.3 Alien Graphics
3.4 Player Graphics
3.5 Set-up Routines
3.6 Movement and Firing
3.7 Collision Detection
3.8 Explosions
3.9 Scoring
3.10 Fuel and Ammunition
3.11 Status Display
3.12 Check for End of Game
3.13 End of Game Display
4 Starting to Write Your Own Games
S Further Explanations and Understanding BASIC
6 Character Graphics
7 Arrays and Adventures
8 Adventure Games, a Selection of Lego Bricks
8.1 Initialisation
8.2 Assign Inventories
8.3 Instructions
8.4 Create the Maze
8.5 Describe the Room
8.6 Player INPUT
8.7 Check INPUT is Legal
8.8 Perform Instructions
8.9 PRINT Response
8.10 Check for End of Game
8.11 End of Game Message
8.12 Round Again
8.13 Food and Strength

99
107
114
126
130

8.14 Torch and Battteries

8.15 Trolls, Run, Fight and Teleport
8.16 Monsters and Magic Dust

8.17 Crystals and Shimmering Curtains

9 Further Adventures 168
10 Some Parting Remarks 181
APPENDICES 183

Appendix One Arcade game variables

Appendix Two Adventure game variables
Appendix Three ASCII character set

Appendix Four Decimal/Binary conversion tables

PREFACE

This book has been designed to help people with little or no
programmingknowledge construct their own arcade and
adventure games. In its simplest form this book is like a Lego-set
with ready made pieces that can be put together, even by the
complete novice, to form a game. For those who wish to expand
their understanding of the BASIC programming language each of
the building blocks or routines is explained in straight-forward
terms. Further sections of the book explain the routines in
greater detail. More experienced programmers may also use this
book as a source of ready written and documented routines for
inclusion, perhaps with alterations, in their own programs.
Many people are left bewildered when they try to make the
transition from buying software to writing their own. Books on
BASIC are full of obscure jargon and tend to treat a simple, highly
practical subject as though it were an arcane, technical concept.
The authors here have attempted to redress the balance by
presenting a simple introduction to how a program is put
together. A worked example of how to construct a program is
given and this can be used as a step by step recipe by the readers
for creating their own unique programs. This piece by piece, easy
to understand approach allows the reader to become familiar with
BASIC programs by ‘handling’ the routines and using them. In
this way each small brick in the structure of programming
becomes an understandable everyday object. With continued use
these ‘objects’ will become less mysterious and will gradually
become as easy to use as building bricks. In much the same way
that children learn to speak English by playing with words, and
even alphabet blocks, the reader will assimilate and learn the
computing terminology and the BASIC language. This approach
allows the learning process to be carried out at your own pace
and, hopefully, through the games you construct, at your leisure.

Obviously this approach also requires that this book be used in
the same manner as a manual for mending cars or a recipe book:
Keep it beside you as you work and refer to it for instructions at
the appropriate points. Do not attempt to read straight through
the book from cover to cover without keying in and trying many
of the routines listed. By the time you have looked at and used
most of the example programs you should find your confidence in
practical BASIC allows you to write your own programs. We hope
you enjoy this book and are rewarded for your studies by a
growing understanding of BASIC and many hours of fun.

Jean Frost and Frederick Siviter

CHAPTER 1

BASIC and Games, Computers and Cheesecake

Computer games are becoming a very popular form of
entertainment. They are also quite expensive. Many computer
owners would like to cut down on this expense by writing their
own games and this book is here to help you do just that. How do
you write a computer game, then? Well, I think we’d better start
by taking a general look at computers and the problems of
converting our ideas for games into computer programs.

Computers are really fast operators, and you may think an
accountant is pretty nippy on his calculator keyboard,
manipulating numbers, but that’s just peanuts compared to the
speed at which computers work. Unfortunately computers are
also dumb. They can’t do anything until you tell them what you
want doing. So how do we tell a computer to do something? Well,
if we really wanted to talk to a computer we would have to speak
entirely in numbers, because that’s all they really understand!
Fortunately most computers are supplied with a built-in
interpreter. It’s just like the Prime Minister using an interpreter
to tell the Russians exactly where they can put their missiles. The
BASIC interpreter can translate our words into the number which
the computer understands.

Great, so we can just stroll up to the computer, pat it on the
keyboard, and say “How much profit did I make selling
cheesecake today ?”. . . Well it’s still not quite that easy, we have
to phrase our question very simply and explain everything to the
computer in simple and exact terms. The BASIC interpreter can
only translate a limited number of words and it assumes that any
word itdoesn’t know is the name of somebody or something.
Right, first we need to tell the computer the facts:

The wholesale cost of a cheesecake is 30p each.
The retail price of a cheesecake is SOp each.

a
We also need to tell the computer things relating to these facts:

Profit is calculated as retail price minus wholesale price.
Total profit is profit per cake multiplied by the number of
cheesecakes sold.

Hopefully we have now given the computer all the information a
child would need to work out the answer. Of course if we forgot
to tell it something the small child might say “you forgot to tell
me how many you sold”, and many computers would say
something dumb like “VARIABLE NOT FOUND” which actually
means the same thing. Your DRAGON is much too shy though,
and instead of telling you it would assume you hadn’t sold any,
which is even worse, so we must make sure we tell it everything it
needs to know. To tell the computer anything we must express it
in BASIC terms. BASIC is like a restricted form of the English
language so in BASIC the above statements would be:

LET WHOLESALE = 30
LET RETAIL = 50
LET SOLD = 40

(That’s what we forgot to tell it before.)

LET PROFIT = RETAIL - WHOLESALE
LET TOTAL = PROFIT * SOLD

(On computers the asterisk ‘“*” is used instead of an x for multiply
because we might get the x mixed-up in the middle of some
letters.)

The DRAGON, unlike some computers, allows us to miss out
the word LET in statements like these, so to save you a lot of extra
typing we won’t bother with LET from here on. So we can just
say:

WHOLESALE = 30

If you have typed in these lines in exactly as above, pressing
ENTER at the end of each line, the computer will have replied ‘OK’
to each statement you made. The computer now knows what the
answer is but, because we didn’t ask it to tell us, it just sits there
being stupid. To get it to give you the answer tell it to:

PRINT TOTAL

When you press ENTER the answer 800 will appear.

Let’s re-examine how we got the computer to do something.
We started with a problem then split the problem up into parts:
We gave the computer the facts, we told it what steps it would
need to go through to work out the answer, then we told it to tell
us the answer. This sequence of instructions, like a recipe, is
called an algorithm and all programs are just such algorithms
(methods) written out in BASIC.

If we wish to use the recipe again we would have to type it in
again exactly as before. To save ourselves time we can store the
instructions as a program on the computer by numbering each
line or statement as we type it in.

1 WHOLESALE = 30

2 RETAIL = 50

3 SOLD = 40

4 PROFIT = RETAIL - WHOLESALE
S TOTAL = PROFIT * SOLD

6 PRINT TOTAL

This time as we type in each line the screen will show a LIST of all
the instructions we have given it. This is a computer program
(program comes from the word programme and, like the ones you
get at the theatre, it shows the order in which things are going to
be done).

When we want the computer to show us what instructions it
has stored we use the BASIC command LIST, followed by ENTER,
and the lines of the program will be displayed on the screen once
again.

When we want the computer to RUN through the LIST of
instructions we simply type the command RUN, then ENTER
(which activates the command).

The computer will then do all the instructions in the program
and almost instantaneously PRINT the answer on the screen.
Well, that was quicker than working it out in your head, but
what a time it took getting the question into a state where the
computer could answer it. Type in, exactly as shown:

10

3 INPUT “HOW MANY DID YOU SELL”;SOLD

Thiswill replace the old instruction number 3 and tells the
computer to ask you how many cheesecakes you sold each time
you RUN the program. If you type anything other than 40 then
the computer will give you a different answer. It will always be
the right answer and it will be worked out far faster than you
could have done it. To save the bother of typing RUN each time
we could add an extra instruction to our program:

7 GOTO 3

This simply tells the computer to GO TO instruction 3 and
continue from there down the lines of the program in order. Now
we have a program that will keep asking you how many you sold
and telling you what profits you would make. You will have to
press BREAK to stop the program.

Our program is numbered in consecutive numbers starting at
1. However this is not usually the case with computer programs.
Suppose we really had forgotten the line about the number of
cheesecakes. We would have tvped in a program that looked like
this:

1 WHOLESALE = 30

2 RETAIL = 50

3 PROFIT = RETAIL - WHOLESALE
4 TOTAL = PROFIT * SOLD

S PRINT TOTAL

If we typed RUN for this set of instructions the computer would
assume that SO1.D was zero, because no one has told it otherwise.
It would therefore multiply PROFIT by zero in line 4 and make
TOTAL equal to the result, zero! PRINT TOTAL would therefore
print zero. Eventually we would realise what we had forgotten
and would want to insert a line to tell it how many cheesecakes it
had sold:

3SOLD = 40

We would now have to retype all the lines except the first two to
create a gap for the new line. Although the computer goes down

11

the LIST of instructions in order it doesn’t care if there are
numbers that aren’t used. So, we can type our program with line
numbers that go up in tens (or any other steps). Now any other
lines we’ve missed out can be given a number between the
numbers of the lines already there.

10 WHOLESALE = 30

20 RETAIL = 50

30 PROFIT = RETAIL - WHOLESALE
40 TOTAL = PROFIT * SOLD

50 PRINT TOTAL

Oops! We forgot that line again, but this time we can simply type
25 SOLD = 40

and the computer will place it in the LIST of instructions at the
appropriate position.

OK, (to quote the computer) we now know roughly what a
BASIC program is, so how do we write one that plays a game?
We’'ve got to think of the right LIST of instructions. That sounds
like a big job to tackle all at once, so we’d better split it up into
smaller sub-tasks. Let’s start with an overview of the sub-tasks
that have to be performed in a typical Arcade-type game. These
are:

1. Initialisation. We must first set up the computer so thatit is
in the correct state to play the game.

2. Instructions. We need to tell the player how to control the
movement and firing, etc.

3. Alien graphics. Decide what the opposition looks like.

4. Player graphics. Decide what the good guys look like.

5. Background. Draw some sort of scene against which the
action takes place.

6. Set-up routines. Telling the computer the facts.

7. Movement and firing. Move the player and see if a shot is to
be fired.

8. Collision detection. See if an alien has been shot or the
player has crashed.

12

9. Explosions. Blow up the poor unsuspecting alien who is very
probably a victim of circumstances beyond his (or its) control.

10. Scoring. Award the plaver some points for his gleeful
destructive ability.

11. Fuel and ammunition. Perhaps we might like to affect the
quantities of these available to the player.

12. Status display. Show the player how he is getting on.

13. Check for end of game. See if something fatal has happened
to the player or if the player has won. We will need to GOTO step
7 if the game isn’t over.

14. End of game display. Say goodbye to the player.

Well, that’s a lot of things to do. In fact some of them look as if
they need large programs just to do one sub-task. BASIC has a pair
of commands which allow us to treat small programs as though
they are sub-tasks or subroutines of a larger program. These
commands are GOSUB and RETURN. The first of these is a lot like
the GOTO command and makes the computer jump to the line
number given, however the GOSUB command also tells the
computer to remember where it came from. Once the computer
has obeyed the GOSUB command it carries on down the list of
instructions in the subroutine until it encounters the RETURN
command. At this point it goes back whence it came having
performed the sub-task.

Using these commands we can write a control program which
simply GOSUBs to the appropriate sub-tasks in the right order. All
we will need to do thenis define the sub-tasks for it to perform
and it will achieve our total task of playing a game. The following
listing shows just such a control program constructed on the basis
of the need to perform the subroutines as laid out above. This
listing and all the other listings in this book have been produced
directly from the DRAGON computer. Using the LLIST command,
which you need to be Welsh (or slightly BRAHMS & ..) to
pronounce, you can tell the computer to LIST the program on to a
printer. This ensures that all the programs in this book are
correct, so if you have any trouble check that your typing
corresponds exactly with the listings given.

Cont

19

12

14

24

2S

39

ag

Sa

100
182
194
106
119
112
119
120
122
129
129
132
139
149
142
149
159
152
157
169
162
169
179
172
179
180
182

rol Program Listing

REM XXXXXXXXXXXXXXXX

REM ¥INITIALISATION¥

REM XXXXXXXXXXXXXRXX

PCLEARS:PMODE4,3:PCLS

NU=@

H=43:PG=3:GOSUB 9999

DIMFB(1):DIMN(1) :DIMAB(1)

GM=g:REM ¥NO. OF GAMES PLAYED#¥
REM ¥*¥CONTROL PROGRAM¥*

REM ¥¥XXXEXXXXXHNX
REM ¥INSTRUCTIONS*
GOSUB 1909

REM X¥XXXXXXXXXXXXXXNX
REM *GRAPHICS(ALIEN)¥
GOSUB 1100

REM XXXXXXXXXXXXXXXX
REM *GRAPHICS(SELF)¥
GOSUB 1280

REM XXXXXXXXXXXX

REM ¥BACKGROUND¥
GOSUB 1300:GM=GM+1
REM X¥XXXXXXXXXXXXXXX
REM ¥START-UP/RESET*
GOSUB 1489

REM X¥XXXXXXXXXX

REM ¥MOVE/FIRE¥

GOSUB 1580

REM XXXXXXXXXXXXXNX
REM ¥CHECK FOR HIT#*
GOSUB 1789

REM XXXXXXXXXX%X

REM ¥EXPLOSION*

IF HIT=1 THEN GOSUB 18990
REM X¥¥¥XXX%X%

189 REM ¥SCORING¥*

199 GOSUB 1909

192 REM X¥¥¥XKHXHHXHXKHHXXX
199 REM ¥FUEL,LASERS ETC¥
289 GOSUB 29909

202 REM ¥¥¥HHHXXXKHHXXXK
99 REM ¥STATUS DISFLAY¥
g GOSUB 219¢

2 REM ¥%¥XXHXKHXHHX%X

? REM ¥END OF GAME?¥

2 GOSUB 2289

2 REM ¥%%XXXXKXXKXK%

? REM ¥ROUND AGAIN¥

@ IF FIN=G THEN 168

2 REM ¥XXXXXXXXX%

239 REM ¥GAME OVER¥

49 GOSUB 2368

42 REM X¥X¥XXXXXKKHNX
REM ¥START AGAIN¥
GOTO 149

REM %¥%%%%%%%%%%%%

NN

aan
N Q0

As you can see there are a lot of lines in the above program that
start with the word REM. This means that anything following the
REM is just a REMark or REMinder as to what is going on. The
computer ignores these lines completely but stores them in the
LISTing so that we can understand what’s going on.

In the next chapter there is an example of how to fill in the
subroutines for this control program and in the following chapter
there is a selection of routines that can be used to make up
different games.

However, before going on to that you should carefully type in
the two routines and the list of DATA statements given below in
listings 1.1, 1.2 and 1.3. These are special routines that will be
explained in Chapter 6, but they are important to the working of
the program, so they must be entered before going on. This
consitutes our first category of initialising the computer to get it
ready to play the game.

Listing 1.1

9099 FMODE4,FG:SCREEN!, 1:REMthis
is just so you can see it happe

ning

9910 ST=7680+1536% (FG-2)

P920 FOR CH=@ TO N-1:RN=INT(CH/3

2)

9939 FOR Y= TO 7:READ CD:IF CD=

2?99 THEN Y=7:G0OTO 29059

9935 IF NV=1 THEN CD=255-CD

9949 FOKE ST+224¥RN+CH+32%Y,CD

9959 NEXTY,CH

29SS RETURN

Listing 1.2

2892 REM ¥FRINT STRING*¥

999 IF FP$="" THEN RETURN

99190 AS=LEFT$(F$,1) :FE=RIGHTS$(F$
JLEN(PS) -1)

9920 IF A%=" " THEN YG=144:XG=20

8:GOTO 9959
9930 YG=144:AS=ASC(A$)-65:IF AS$<
"A" THEN YG=152:AS5=ASC(A%$)-48
9949 XG=8%AS

9950 GOSUB 9960:X5=XS5+8:G0TO 999
o

9969 PMODE4,3:GET(XG,YG) - (XG+7,Y
G+7),N,6G

9979 PMODE4, 1:PUT(XS,YS) - (X5+7,Y
5+7),N,PSET:RETURN

16

Listing 1.3

S99
S92
g

S94
S96
Sg8
a

S19
S12
S14
S16
Si8
S29
522
524
526
528
539
532
S34
536
538
S49
S42
544
S46
S48
559
552
S62
S64
S66
Sé68
S79
572

DATA
DATA

DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

B,60,66,66,126,66,66,0
9,124,66,124,66,66,124,

9,60,66,64,64,66,60,0
9,120,68,66,66,68,120,0
@, 126,64, 124,64,64,126,

9,126,64,123,64,64,64,0
0,60,66,64,78,66,60,0
0,66,66,126,66,66,66,8
9,62,8,8,8,8,62,0
0,2,2,2,66,66,60,0
9,68,72,112,72,68,66,98
0,64,64,63,64,63,126,0
0,66,102,90,66,66,66,90
9,66,98,82,74,70,66,0
0,60,66,66,66,66,60,0
9,124,66,66,124,64,64,0
0,60,66,66,114,74,60,0
0,124,66,66,124,68,66,0
0,60,6%,60,2,66,60,0
@,254,16,16,16,16,16,98
5,66,66,66,66,66,60,0
,66,66,66,66,36,24,0
0,66,66,66,99,102,66,0
g, 66,36,24,24,36,66,0
0,130,68,40,16,16,16,0
9,126,4,8,16,32,126,0
0,0,0,0,0,0,08,0
999,999, 999,999, 999
9,24,36,44,52,36,24,0
2,8,24,8,3,3,28,0
9,24,36,8,16,32,60,90
g,24,36,24,4,36,24,0
2,3,24,49,72,124,8,08

574
S76
S78
589
582
S84

DATA
DATA
DATA
DATA
DATA
DATA

9,60,32,56,4,36,24,90
9,28,32,56,36,36,24,9
9,60,4,8,16,32,32,9
9,24,36,24,36,36,24,9
9,24,36,36,28,4,56,9
0,0,8,0,0,0,8,0

CHAPTER 2

Building Blocks, an Example Construction

In the previous chapter we got to grips with the fundamentals of
BASIC programming. In this chapter we will not be concerning
ourselves so much with understanding the programs but more
with using them. We will work through an example of how to
build up a game by adding subroutines to the control program. It
may be helpful to think of the control program as being like a
“blocks and holes” type of child’s toy. To use it you must place
one block in each hole to get acomplete program. Remember
that each block must be the right shape for the hole you are
putting it in, although there may be variation in details (like
colour) of the block. In the listing of the control program and in
theother listings throughout this book, you will see many lines
beginning with REM These lines are not instructions to the
computer but are merely REMarks or REMinders to us humans of
what we intended when we gave the instructions. If you wish to
leave these lines out to save time typing it won’t make any
difference to the computer, the program or the game. It will
mean, however, that you will need to take longer to find the
section where some particular task is performed should you wish
to examine or alter it later. Most people do not have perfect
memories so these REMinders can be very important when trying
to read the program.

Right then, let’s make a game. Obviously the first thing we
need to do is type, or I.OAD from tape, the Control Program and
the initialisation routines given in Chapter 1.

Having done this we need to decide what sort o f game we wish
to produce: What will be the aim of the game? Is it going to be a
game of dodging ravenous spiders in the desert, or a game of
blasting alien invaders out among the stars? Of course due to the
nature of the system you could have cowboys shooting at alien
flies in the middle of the ocean — whatever appeals to your sense
of humour. IU's entirely up to you. Well, whatever you decide the

18

first things to consider are whether you are going toshootat
things or dodge, and which modes of movement are available to
your player. LEFT,RIGHT, UP,DOWN and even HYPER-space
jumps can be selected. For our example game let’s choose to be a
tank holding off alien invaders amongst the stars.

Step 1. Choose the INSTRUCTIONS. Type in the first listing
from the instructions section (listing 3. la, also given below),
which must always be used. New we must select and add the
lines that allow us to move LEFT and RIGHT (listings 3.1b and
3.1¢). Finally we add the line which allows us to FIRE (listing
3.16).

Listing 3.1a

19099 CLS:U=0:D=0:F=@:iH=0:L=0:R=0
1919 FRINTE@L1Q, “INSTRUCTIONS"
19890 FRINT@4S5S1, "FRESS ANY KEY TO
CONTINUE"

19099 A$E=INKEY$:IF A$="" THEN 109

g

1995 RETURN

Listing 3.1b

1929 FRINT@139, "USE LEFT ARROW T
O MOVE LEFT":L=1

Listing 3.1¢

1939 FRINT@162,"USE RIGHT ARROW
TO MOVE RIGHT":R=1

Listing 3. 1f

1969 FRINTE@258, "USE @ TO FIRE":F
=1

20

Step 2. Choose the ALIEN. We have already decided that we
wantan alien invader so we’ll use listing 3.2h.

Listing 3.2h

1100 REM ¥¥EAKRRKRKKXNRK
1116 REM ¥ALIEN INVADER¥

1120 REM X¥%¥XXKXKKXKKXKR

1139 DATA 20,28,62,127,62,28,42,
?3

1140 PG=2:N=1:GOSUB 99090

1150 REM XX¥XXXKKXXRKERKRKKKRH
1160 REM %¥STORE IN ARRAY ’A’*%
1170 REM X¥RRKRXERRRXRRKRRRRE
1180 DIMA(1):GET(@,144)-17,151),
A,G

1198 RETURN

Step 3. Choose the PLAYER. We want a tank for our player so
we’ll use listing 3.3b. It is worth noting at this point that we
could have chosen identical characters for both the alien and our
player (e.g. both helicopters as in listings 3.2g and 3.3a) but it
will look better if they are different.

Listing 3.3b

1200 REM ¥¥XXXREKXKXKRX
1218 REM ¥PLAYER TANK¥

1220 REM ¥X¥AKEXXRKRKR

1230 DATA 16, 16,84, 124, 124, 124,64
3,9

1248 FG=2:N=1:GOSUB 9090

1250 REM X¥XREXRXRXRXRRERKRERE
1260 REM *STORE IN ARRAY 'B’%
1270 REM ¥EKKXKEKREERERKXKRHK
1280 DIME(1) :GET (@, 144)- (7, 151),
B,G

1299 RETURN

21

Step 4. Choose the BACKGROUND. We could select any listing
from section 3.4 of Chapter 3, but since we want an outer space
game let’s choose the scene with small stars (listing 3.4f).

Listing 3.4f

25 NV=g

1399 REM XXXXXXXXXAXXXXX

1395 REM ¥ SMALL STARS *

1319 REM X¥XXXHKXXXXXKNKX

1359 FMODE4, 1 :FCLSNV:SCREEN1, 1
1369 FOR @=@ TO 25

1379 FSET(RND(255) ,RND(175), - (NV
=)

1389 NEXT @

1399 RETURN

Partof the general scene (or superimposed upon it) will be
whatever we decide to display in the way of SCORES, AMMO and
FUEL. so these headlines can be displayed here. We will ignore
AMMO fer the time being and just have FUEL and SCORE (listings
3.4iand 3.4j).

Listing 3.4i

1385 F$="SCORE:":X5=96:Y5=176:G0
SUB 9999

Listing 3.4j

1387 FP$="FUEL:":X5=184:Y5=176:G0
SUB 99909

StepS. START/RESTART routine. There is no choiceabout

thisone. We need tosetall the variableseven if we don’tappear
to be using them in this particular incarnation of our game. This
is because some routines test them as a matter of course, and we

22

don’t want AMMO=0 (for example) causing the game to end
prematurely.

Listing 3.5

1499 REM X%XXXXXXHXHHXXXXXXXX
1495 REM ¥SET UP AND RESTART#*
1419 REM %% 333663 25 %
1429 ALIENS=1g:REM ¥NO. OF ALIEN

S¥*

1439 SCORE=9:REM ¥SET SCORE TO Z
ERO¥

1449 AMMO=19:REM ¥SET LASERS TO
FULL*

145¢ FUEL=1@:REM ¥SET FUEL TO FU
LL*

1460 PY=168:PX=120:REM ¥START PO
SITION OF SELF#*

1479 IF F=@ THEN PY=8:REM ¥%CHANG
E POSITION FOR DODGING GAME#*
1475 GET(PX,PY)-(PX+7,PY+7),PB,G
:PUT (PX,PY)- (PX+7,PY+7),B,PSET
1480 DD=1:P=@:FIN=0

1499 XP=PX:YP=PY

1495 RETURN

Step6. MOVE/FIRE routine. The main routine from this section
must always be typed in, so first of all add listing 3.6a. Now we
need the lines which allow us to move LEFT & RIGHT (listing
3.6b). Including this routine will only allow us to move LEFT or
RIGHT provided we added the appropriate line in the
INSTRUCTIONS routine.

Listing 3.6a

1599 REM XXXXXXXHKHAAXX
1592 REM ¥MOVE & FIRE¥
1S5GS REM XXXHEXAXXXXNXX

1519 IF DD=9 THEN 1549
152¢ DD=¢

1539 AY=8:AX=RND(32) ¥8-8:XA=AX
1535 REM ¥XMOVE ALIEN%¥

1549 IF AY<>8 THEN PUT(XA,AY-8)-
(XA+7,AY-1),AB, PSET

1545 GET (AX,AY)-(AX+7,AY+7),AB,G
IPUT (AX,AY) - (AX+7,AY+7) ,A,PSET
1558 XA=AX:AY=AY+8:IF AY=168 THE
N DD=1:P=P+1:ALIENS=ALIENS-1
1555 IF DD=1 THEN PUT(XA,AY-8)-(
XA+7,AY-1) ,AB,PSET

1560 AX=AX+8%(RND(3)-2)

1565 IF F=@ AND AX>PX THEN AX=AX
-8:GOTO 1589

1570 IF F=0 AND AX<PX THEN AX=AX
+8:60TO0 15890

1580 IF AX<@ THEN AX=0

1590 IF AX>248 THEN AX=248

1595 REM ¥A¥AXRXXXXXXRHRE
1596 REM % MOVE PLAYER %

1599 REM %¥XXXXXXXXRXXXXX

1600 A$=INKEYS$

1639 IF PX<@ THEN PX=¢

1635 IF PY<@ THEN PY=g

1649 IF PX>248 THEN PX=248

1645 IF PY>168 THEN PY=148

1650 IF PY=YP AND PX=XP THEN 168
o

1668 PUT(XP,YP)-(XP+7,YP+7),PB,P
SET

1679 GET (PX,PY)-(PX+7,PY+7),PB,G
:PUT (PX,PY) - (PX+7,PY+7),B,PSET
1675 YP=PY:XP=PX

1680 K=@:IF F=1 AND A$="g" THEN
K=1

1699 RETURN

23

24
Listing 3.6b

1598 REM % LEFT & RIGHT *

1602 REM ¥¥LEFT AND RIGHT¥¥
1605 IF L=1 AND A$=CHR$(8) THEN
PX=FX-8

1610 IF R=1 AND A$=CHR$(%) THEN
PX=FX+8

Step 7. CHECK FOR HIT routine. W e must select a routine
which will fire some sort of weapon so we won’t use 3.7a. Let’s
use 3.7¢, the L.ASER routine.

Listing 3.7¢

1700 REM X%X¥KXKKKXKKRRK
1701 REM %CHECK FOR HIT#*

1702 FEM * LASER *

1705 REM ¥ERERARKRRERRNK

1719 HIT=0:IF K=@ THEN 1799

1715 SOUND1@Z, 1

1720 BX=F)}+3:BY=167

1720 COLOR(1 AND NV=@), 1:LINE(BX
,%¢)-(BX,8),PSET

1745 IF BX>XA-1 AND BX<XA+3 THEN
HIT=1

1755 COLORNV, 1:LINE(BX,BY)- (BX,8
), PSET

1790 RETURN

Step 8. EXPLOSION routine. When we hitsomething we want
to have some sort of acknowledgement of our success. We will
choose a BLIP noise (listing 3.81) for our 1.ASER. We must add
listing 3.8k because ours is a FIREing game and we need to wipe
the alien from the screen when we hit it.

25
Listing 3.8i

1203 REM XXXXXXXXXXXXX
1891 REM ¥ EXFLOSION *
1892 REM * BLIF *
189S REM ¥¥XXHXHKHXHXHNNXK
1219 FOR @=1 TO S

1329 30LINDISH, 1

249 NEAT R

1899 RETURN

[

Listing 3.8k

1888 IF F=1 THEN PUT(XA,AY-8)-(X
A+7,AY-1) ,AB,PSET:DD=1:ALIENS=AL
IENS-1

Step 9. SCORE routine. When we hit something we also want to
have some sort of increase in our SCORE to tell us what great shots
we are. We will choose to give ourselves 10 points for each alien
we hit (listing 3.9d).

Listing 3.9d

-
[

REM ¥XXXXXXXXXXXXXXXX

REM ¥SCORING ROUTINE*

REM % 19 FPOINTS *

REM X¥XXXXXXXXXXXXXXXX

IF HIT=0 OR F=g@ THEN 1279
SCORE=5CORE+190

RETURN

e b b
ROV IR ISV B I
N -9 yo
QAQUN~Q

R

=

Step 10. FUEL & AMMUNITION routine. As we have decided
to use FUEL and ignore AMMUNITION, we will start with listings
3.10b and 3.10fto decrease our FUEL, or energy reserves each
time we fire our laser. We also want to increase the fuel when we
score a hit and we will be generous and give ourselves a total
reFUEL for each hit (listing 3.10h).

26
Listing 3.10b

2099 REM X¥HXXXXXXXXXXXXXXXXK
2092 REM ¥FUEL AND AMMUNITIONX
2093 REM * *
2005 REM ¥¥HHHHHHHHHHXXXXXXXXXX
2099 RETURN

Listing 3.10f

2937 REPM XXX XXXKXXXHXNK¥
29038 REM ¥DECREASE FUEL¥
2037 REM X¥XXXXXXXXXXXXXK
2049 IF K=1 THEN FUEL=FUEL-1

Listing 3.10h

2047 REM ¥¥¥XXXXXXXXXXX¥
2048 REM ¥ RESET FUEL ¥
2049 REM X¥XXHXXXHXXXHXXKX
2059 IF HIT=1 THEN FUEL=19

Step 11. STATUS DISPLAY. W e need to update the display of
information on the screen. For the SCORE we will need to use
listing 3.11b. As we have already decided to tell the player how
his fuel supply is progressing we will have to add listing 3.11d.

Listing 3.11b

2109 REM X¥¥EXXXXXKXXXXXNK¥
21€¢2 REM ¥STATUS DISFLAY *

219% REM % *
2197 REM X¥¥¥XXXXXXXXXXAXK
2119 °

2117 REM XXXXRRXXXXXXXXX
2118 REM ¥DISFLAY SCORE¥
2119 REM ¥¥¥XXXHXXXXXXNK¥

Q

FP$=STR$(SCORE) +" ":1X5=144:Y
76:GOSUB 7990
g RETURN

(SO
[T
g = B

Listing 3.11d

7 REM X¥XXXXXXXXXXXXKX

3 REM ¥DISFLAY FUEL¥

REM ¥¥%HXXKHHXXKXX
FPE=STR&(FUEL) +" ":X5=224:vS
&:GOZUE 9999

Q -~

(IO IS E OS]

O
\I-h(cllu(l

Step 12. CHECK FOR END. Now we need to decide what
conditions are going to indicate the end of the game. Obviously
we will want to end the game at some time, so we start with
listing 3.12a and add at least one of the other listings from that
section. For our game let’s choose to end the game if we let 3 of
the opposition get PAST or if we run out of FUEL. So we have to
add listings 3.12d and 3.12e.

Listing 3.12a

TS REM XXXXXXXXXXXXXXXXXXXXNXK
@2 REM ¥CHECK FOR END OF GAME%¥
REM 3636366333333 336X % XX
?9 RETURN

PR BN

[SENESEY
Q
4]

Listing 3.12d

224¢ IF P=2 THEN FIN=1

Listing 3.12¢

2259 IF FUEL=@ THEN FIN=1

27

28

Step 13. END OF GAME DISPLAY. If it’s the end of the game
we need to either stop the game, or ask the player if he wants
another go. Let’s choose the POLITE STOP routine (listing 3.13b)
and, since we have a SCORE, we’ll also add listing 3.13c to tell us
what we got.

Listing 3.13b

Q

amystluanX

REM ¥¥XXXXXXXXXXX

REM ¥ STOF GAME %

RENM XFOLITE STOF¥

REM ¥¥%XXXXXXXXX¥

CLs

FRINTR2ZS, "ANOTHER GO7":A®=
T

AS=INKEY$:IF A%="" THEN 234

(D]

[

WZ WU
7. Q

5

IF A$<>"N" THEN 2379
STOP
RETURN

o
QQ

MRMNMNpRMNDHRNNDRNRNDNDRN

oW

R\
Q

Listing 3.13¢

20 FRINTE136, "VvOUR SCORE WAS";
ORE

0N

3
C

And that’s it! Your final listing should look like the example
below. If it doesn’t then make sure you’ve typed in all the listings
with the right line numbers. Now all you have to do is key in RUN
and press ENTER to play your game! GOOD SHOOTING!

If you have any problems or error messages then go back
through your listing and check it corresponds exactly with the
one below. The error message will tell you where the problem
was noticed and it would be a good idea to look there first. Since
the program is split up into sections you can check through just
one section at a time. Of course the error might be in one of the
previous sections and only have been noticed now. So, if you

29

can't see an error where it says, try working backwards.
Remember, anything out of place or mis-typed will alter the
program and could cause it to stop.

Example Program

16 REM ¥¥HKIEXXHKKKHHHKKX
12 REM ¥INITIALISATION¥
14 REM %KX X%
29 PCLEARG&6:FMODE4,3:PCLS
25 Nv=g

2@ N=43:FPG=3:GOSUB 9999
49 DIMFB(1):DIMN(1):DIMAB (1)
S@ GM=g:REM ¥NO. OF GAMES FLAYED
*

199 REM %¥¥CONTROL FPROGRAM¥¥
19z °

199 REM ¥¥¥XXXXXXXXXXX
196 REM ¥INSTRUCTIONS*
119 GOSUE 1999

112 REM ¥%HHXKHHXKHHXXKKXX
119 RE® ¥GRAFHICS(ALIEN)*
129 GOSUE 11909

122 REM ¥¥XHHKKXXXHKXXNK
125 REM ¥GRAFHICS(SELF)*%
120 GOSUB 1299

22 REM X¥¥%XXXXXHXXX

129 REM ¥BACKGROUND¥

149 GOSUB 1399:GM=GM+1
142 REM %¥¥%HHXXHXXXKNXXKX
149 REM ¥START-UF/RESET*
159 GOSUE 1499

152 REM ¥¥¥XXXXHXXK%

159 REM ¥MOVE/FIRE¥*

169 GOSUEB 15909

162 REM ¥¥¥¥XKKKKKKKHXX
169 REM ¥CHECK FOR HIT¥
179 GOSUB 1799

30

172 REM XR¥XKKXKENRK
179 REM *EXPLOSION¥

13¢ IF HIT=1 THEN GOSUB 18909
182 REM ¥¥XKKXKAK

1€9 REM %SCORING¥

199 GOSUE 19990

2 REM ¥AXERXXRERXKRKANRK

REM *FUEL,LASERS ETC#¥
GOSUB 2000

REM ¥%XEXXXRXXRKRRKR

REM %STATUS DISFLAY#

GOSUB 2109

REM H¥%XEXXKXKRKKRN

REM ¥END OF GAME?#¥

GOSUB 229¢

REM ¥¥KXXKXKKXNKX

REM *ROUND AGAIN¥

IF FIN=0 THEN 16€

REM %¥KXKKKKXKK

REM *GAME OVER#%

GOSUE 23090

REM %¥KEXKXKKXKKR

REM *¥START 'AGAIN¥

GOTO 130

REM HEXXKKXKRKKXK

DATA 0,60,66,66,126,66,66,0
DATA ©,124,66,124,66,66,124,

[
N~ QQ-0-Q
RVRUER R I S IO RG BN B SRR I

H NN
N YN Q

ey

MM RMNRMBRMNRBMNBNBNNRND

Y

a

Q
N aMQ

Q

[}
H

DATA 0,60,66,63,64,66,60,0
DATA 0,120,68,66,66,68,120,0
DATA 9,126,64,124,64,64,126,

Q
0

DATA 0,126,649, 124,64,64,64,08
DATA 0,60,66,69,75,66,60,0
DATA 0.66,66,126,66,66,66,0
DATA 9,62,8,5,8,2,62,90

DATA ©0,2,2,2,66,66,60,0

DATA §,68,72,112,72,68,66,0

LI'II'.'IUIU'II'.'IUI\‘D%UIUIDUIUIm]\]
)

[B S S S Sy
QoMo hnNQ

LN OO BN

W dEHNRNN

[

MA@ @ama i naa@aaa@a gy ma
M 00NN N a
VMHNQOHNQ OO h Q

9

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
FEM

0,64,64,64,64,64,126,0
0,66, 102,70,66,66,66,0
9,66,58,82,74,70,66,0
0,60,66,66,66,66,60,0
8,124,66,66,124,64,64,0
5,60,66,66,114,74,60,0
0, 124,66,66,124,68,66,0
0,60,64,60,2,66,60,0
0,254,16,16,16,16,16,0
0,66,66,66,66,66,60,0
0,66,66,66,66,36,24,0
0,66,66,66,90,102,66,08
0,66,36,24,24,36,66,0
0,130,68,40,16,16,16,0
©,126,4,5,16,32,126,0
0,0,0,0,0,0,0,0
999,999,999, 999,999
©,24,36,44,52,36,24,0
¢,s5,24,8,8,8,28,0
0,24,36,8,16,32,60,0
9,24,36,24,4,36,24,0
¢,8,24,490,72,124,8,0
¢,60,32,56,4,36,24,0
9,25,32,56,36,36,249,0
0,60,4,8,16,32,32,0
0,24,36,24,36,36,24,0
0,24,36,36,258,9,56,0
°,0,5,0,0,0,8,0

instructions

1639 CLS:U=0:D=0:F=@:H=0:L=0:R=0
1919 FRINTR@19, "INSTRUCTIONS"
1920 FRINT@139, "USE LEFT ARROW T

Cc MOVE LEFT":
1929 FRINT@Lé&

=1
"USE RIGHT ARROW

TO MOVE RIGHT":R=1i
19069 FRINT@258,"USE @ TO FIRE':F

=1

32

1989

FPRINT@4S1, "PRESS ANY KEY TO

CONTINUE"

1998
o
1995
1999
1109
1119
1129
1120
73
1149
1159
1169
1170
1189
A,G
1190
1199
1200
1210
1229
123
8,0
1249
1250
1260
1279
1289
B,G
12990
1299
1300
1395
1319
1350
1360

AS=INKEY$:IF As="" THEN 199

RETURN

REM alien graphics

REM X¥XX¥XXXXXHXHXKXX

REM ¥ALIEN INVADER%¥

REM %X%%¥HHXXKHHXXK¥¥

DATA 20,28,62,127,62,28,42,

PG=2:N=1:G0OSUB 9999

REM 33%%%HH 6% KKK XX KK KX XXX
REM ¥STORE IN ARRAY 'A’%
REM 36%%% %K KK 6% KKK XX X%
DIMA(1):GET (@, 144)-(2,151),

RETURN

REM self graphic

REM ¥¥%¥ XXX XK HXX¥

REM ¥FLAYER TANK%¥

REM X¥XXXXXHXXXXX

DATA 16,16,84,124,124,124,6

PG=2:N=1:GOSUB 9999

REM %366 % KKK %X HHH XX KKK XK
REM ¥STORE IN ARRAY 'B’¥
REM ¥R HKKKKKKXHHXHHHHHX
DIMB{1) :GET(g,144)-(?,151),

RETURN

REM background

REM X¥¥X¥X¥XXXHXHXXXX

REM ¥ SMALL STARS ¥

REM X¥¥X¥X¥XXXHXHXKXX
FMODE4, 1 : PCLSNV:SCREEN1,
FOR @=¢ TO 2S5

1370 PSET(RND(Z255) ,RND(175),~ (NV
=9))

180 NEXT @

1385 P$="SCORE:":X5=96:Y5=176:G0
SUB 9900

1387 P$="FUEL:":X5=184:Y5=176:60
SUE 9999

1390 RETURN

1400 REM XXXXRXAXERKXXARKRRRN
1495 REM ¥SET UF AND RESTARTH
1410 REM XXXXXXXRRERXERXERNRN
1420 ALIENS=19:REM ¥NO. OF ALIEN
¥

1430 SCORE=S:REM *SET SCORE TO Z
ERO¥

14349 AMMO=10:REM ¥SET LASERS TO
FULL%

1456 FUEL=10:REM ¥SET FUEL TO FU
LL*

1440 PY=168:FPX=120:REM ¥START FO
SITION OF SELF¥

1479 IF F=@ THEN PY¥=8:REM ¥CHANG
E FOSITION FOR DODGING GAME%
1475 GET(PX,PY)-(FX+7,FY+7),FB,G
IPUT(PX,PY)- (FX+7,PY+7),B,PSET

G REM FXAXRXXXNRXRX
FEM ¥MOVE & FIRE¥

REM #XXKNXRKRRKRK

IF DD=@ THEN 1549

D=9

9 AY=8:AX=RND (3Z) ¥8-8:XA=AX

S REM ¥¥MOVE ALIENX¥

1549 IF AY<>8 THEN PUT(XA,AT-8)~
(MA+7,AY-1),AB,PSET

33

34

1545 GET(AX,AY)-(AX+7,AY+7),AB,G
IPUT (AX,AY) - (AX+7,AY+7) ,A,PSET
1SS0 XA=AX:AY=AY+3:IF AY=168 THE
N DD=1:P=P+1:ALIENS=ALIENS~1
1SSS IF DD=1 THEN PUT(XA,AY-3)-(
¥A+7,AY-1),AB,PSET

1560 AX=AX+3%(RND(3)-2)

1565 IF F=@ AND AX>FX THEN AX=AX
-8:60T0 1580

1579 IF F=0 AND AX<FX THEN AX=AX
+3:60TO 15380

1580 IF AX<E® THEN AX=9

1570 IF AX:>2348 THEN AX=243

1595 REM #XXXKEXKEKXXKKKRH

1596 REM % MOVE FPLAYVER %

1598 REM % LEFT & RIGHT %

1595 REP XAXXRXKRXAKRXRRKKAN

1500 AF=INKEVS

L6OZ REM X¥¥LEFT AND RIGHT*¥

1585 IF L=i{ AND A$=CHR$(3} THEN

R=1 AND A%=CHR$(%) THEN

PX<{3 THEN FPX=g
1635 IF PY{& THEN FY=9
1549 IF PX»248 THEN Px=243
1¢45 IF PY»168 THEN PY=163

1358 IF PV=YF AND PX=XP THEN 168
P>

1669 PUT(XP,YP) - (XP+7,YP+7),FB,P
SET

1670 GET(PX,PY)-(PX+7,PY+7),FB,G
(PUT(PX,PY)-{PX+7,PV+7),B, PSET

1675 VP=PY:XP=FPX

1639 K=@:IF F=1 AND A%="6" THEN
K=1

16799 RETURN

35

1700 REM ¥X¥RKXKRKRKKKRKK
1701 REM ¥CHECK FOR HIT#¥

1702 REM % LASER *

1705 REM ¥X¥XXXKRKXKRKXK

17:0 HIT=0:IF K=@ THEN 1799

1715 SOUND19@, 1

1720 BY=PX+I:BY=167

1730 COLOR(1 AND NV=#),1:LINE(BX
,BY)-(BX,8),PSET

1745 IF BX>XA-1 AND BX<XA+S THEN
HIT=

1755 COLORNV, 1:LINE(EX,BY)- (BX,8
)y, PSET

1799 RETURN

1800 REM X¥RXXRKXRKARK

1801 REM % EXFLOSION %

1802 REM ¥ SLIF *

1805 REM ¥¥XXAKRRKRKXE

1819 FOR G=1 TO S

520 SOUND15@, 1

1849 NEXT @

1880 IF F=1 THEN PUT(XA,AY-8)-(X
A+7,AY-1),AB,PSET:DD=1:ALIENS=AL
IENS-1

1898 RETURN

1900 REM ¥EXREXXRXRKAKRKRRNR
1992 REM *SCORING 19 FOINTS¥
1995 REM ¥¥E¥RKRKAKKRKRRRHNKRE
1919 IF HIT=g OR F=@ THEN 1999
1920 SCORE=SCORE+10

1999 RETURN

2000 REM ¥AXRRREREXRXRXRERRRERRN

2001 REM * *
2092 REM ¥ FUEL AND AMMUNITION %
2093 REM % *

2004 REM ¥%%HHH KK KK 6% K56 %% %%

36

2037 REM ¥¥¥¥HHXHXXHXXXXXX

2038 REM ¥ DECREASE FUEL *

2039 REM %666 HHHHH XXX

2049 IF K=1 THEN FUEL=FUEL-1
2047 REM ¥¥XKHXXKHHXXXXX

2048 REM ¥ RESET FUEL *

2049 REM ¥¥¥¥HHHHHHHHKX

2059 IF HIT =1 THEN FUEL=1@

2099 RETURN

21090 REM X¥¥XHHXXKHXXXXHNXXKX

2192 REM ¥STATUS DISFLAY *

2193 REM * *

2197 REM ¥¥HHHHHHHHH KKK KKK

2119

2117 REM %% HHKHX%

2118 REM ¥DISFLAY SCORE¥

2119 REM ¥¥HHHHHHHHHHHX%

2120 P$=STR$(SCORE) +" ":1X5=144:Y
S5=176:GOSUB 9999

2137 REM ¥¥¥¥HHHHHHHHKX

2138 REM ¥DISFLAY FUEL*

2139 REM X¥¥¥XXXXXXXXXXK

2149 PH$=STRE(FUEL)+" ":X5=224:YS
=176:GOSUB 9999

2199 RETURN

2200 REM X¥¥XXXXHXXXXXXXKKXXKKKKKX
2292 REM ¥CHECK FOR END OF GAME¥
2205 REM H¥¥XXXXXXXXXXXKKXXKXKXXKX
2249 IF FP=3 THEN FIN=1

2259 IF FUEL=@ THEN FIN=1

2299 RETURN

2399 REM ¥¥XXXXXXXXXXX

2392 REM ¥ STOF GAME *

23932 REM ¥FOLITE STOF*

2205 REM ¥¥XXXXXXXXXXK

2319 CLS

2329 PRINTE136, "YOUR SCORE WAS";
SCORE

2339 FPRINT@23S, "ANOTHER GO7?":A$=

INKEY®$

2349 AS=INKEY$:IF A$="" THEN 234

g

2350 IF A®<>"N" THEN 23990

2369 STOFP

2399 RETURN

99909 FMODE4,FPG:SCREEN1, 1:REMthis
is just so you can see it happe

ning

9919 ST=7680+1536%(FPG-2)

9920 FOR CH=@ TO N-1:RN=INT(CH/3

2)

?939 FOR Y¥=@ TO 7:READ CD:IF CD=

299 THEN Y=7:G0OTO 9959

2935 IF NV=1 THEN CD=255-CD

?949 FPOKE ST+224¥RN+CH+32%Y,CD

2959 NEXTY,CH

29SS RETURN

92899 REM ¥PRINT STRING¥

9999 IF P$="" THEN RETURN

?919 AS=LEFT$(P$,1) :F$=RIGHTS(F$

,LEN(P$)-1)

9920 IF A%=" * THEN YG=144:XG=20

8:GOTO 99590

9930 YG=144:A5=ASC (A%$)-65:IF A<

"A" THEN ¥G=152:AS5=ASC (A%$)-48

9949 XG=8%AS

9959 GOSUB 9960:X5=X5+8:G0T0 999

g

92969 FMODE4,3:GET(XG,YG)-(XG+7,Y

G+7),N,G

9979 PMODE4, 1:PUT(XS,YS)-(XS+7,Y

S+7),N,PSET:RETURN

190000 A$="LISTING 3."

19919 INFUT"LISTING 3.WHAT";I%

19920 PRINTH-2,A$+I%

37

38

SAVING YOUR PROGRAM

When you are satisfied with your game you will probably want to
SAVE it on cassette tape. This is done in the following way:

1. Position the tape in your cassette recorder, making sure that
you have wound it past any plasticheader tape as this cannot be
recorded on.

2. Decide on a name for your program — you can use up to ten
letters. For the purpose of this example let’s use the name ‘MY
GAME".

3. Nowtypein, without a line number:

CSAVE “MY GAME”

4. Pressthe RECORD and PLAY keys together on your
recorder then press ENTER. If you pressed ENTER before starting
the tape you will either have to wait until the computer has
finished and start again or you can stop it by pressing the RESET
button on the left side of the computer. This will always stop the
computer in its tracks and you will not lose your program. You
will find that the BREAK keys will not interrupt a CSAVE (or
CLOAD or SKIPF). However, be certain to press RESET and not the
POWER SWITCH on the back of the computer. That certainly
would cause the loss of your program.

S. Nothing much happens on the TV screen except that the
flashing black cursor disappears. When the program has been
saved the computer will once again chirp OK.

6. Now it would be nice to check that your program has been
recorded properly. There is no foolproof way of doing this on the
DRAGON but the following will usually fail with 210 ERROR if
there is anything wrong with the recording.

First, rewind the tape and type either

SKIPF “MY GAME”
or
SKIPF (on its own)

In either case press ENTER and start the tape (PLAY this time not
RECORD?!).

39

If it all goes fine and ends with OK then your program is
probably recorded properly, but the only way you will ever know
for sure is to switch off and on again and type CLOAD“MY GAME”
followed by ENTER to load the programin again. I suggest that
you have several successful SKIPFs before trying that.

If you have problemsrecording, try experimenting with
different volume levels and, if your recorder has a tone control,
turn it to maximum treble.

CHAPTER 3

Arcade Games, a Selection of Lego Bricks

This chapter is made up of thirteen sub-sections. Each of these
sections contains a selection of routines which can be used to fill
the holes in the control program. Remember to read the
instructions at the start of each section which tells you whether
listings are optional or not. If you don’t feel too confident, why
not follow the example routine and just use one diff erent
subroutine. Try, for example, a diffierent background or a
different alien and you will see how easy it is to make changes to
the game. The more routines you decide to change the more your
game will differ. Remember as long as you don’t try to fit a
square peg into a round hole you can use the routines in any
combination. Some games may look a little bizarre, but at least
they’ll still be playable!

Following each section of listings is a brief explanation of how
the routines in that section work. This includes details of what
variables they change and how they relate to the other routines in
the overall program.

We hope you enjoy experimenting with these routines as much
as we enjoyed writing and testing them.

Section 1: INSTRUCTIONS

In this section 3.1a always needs to be used. This performs the
basic tasks of getting ready to give instructions. Add to this any
or all of the following listings 3.1b - g to complete the instructions
block. It doesn’t matter in what order you add the lines, because
the computer will place them in numerical order in its listing.

40

41

Listing 3.1a

1999 CLS:U=90:D=0:F=g:H=0:L=90:R=90
1919 PRINT@19, "INSTRUCTIONS"
1989 PRINT@4S1, "PRESS ANY KEY TO
CONTINUE"

1999 A%=INKEY®:IF A$="" THEN 199

2

1995 RETURN

Thislisting gives the instruction for,and enables, LEFT
movement. You would normally include the RIGHT movement
listing as well, but it’s up to you.

Listing 3.1b

1929 PRINT@139, "USE LEFT ARROW T
0O MOVE LEFT":L=1

This listing gives the instruction for, and enables, RIGHT
movement.

Listing 3.1c

1939 PRINT@162, “"USE RIGHT ARROW
TO MOVE RIGHT":R=1

This listing gives the instruction for, and enables, DOWNward
movement. You would normally include the UPward movement
listing as well, butagain, it’s up to you.

Listing 3.1d

1949 FRINT@194, "USE DOWN ARROW T
0 MOVE DOWN":D=1

42

This listing gives the instruction for, and enables, UPward
movement.

Listing 3.1e

1959 PRINT@226, "USE UP ARROW TO
MOVE UP":U=1

This listing gives instructions for, and enables, FIREing.

Listing 3.1f

1960 PRINT@2S8,"USE @ TO FIRE":F
=1

This listing gives the instruction for, and enables, HYPER-drive
for HYPER-space movement.

Listing 3.1g

1979 PRINT@299, "USE H TO HYPER-D
RIVE":H=1

The main instruction routine (listing 3.1a) clears the screen and
PRINTs up a heading “INSTRUCTIONS”. It also sets a number
of variables that are used to indicate whether a particular ability is
enabled. These variables (L,R,U,D,F and H) are all set to 0 (to
indicate that they are disabled).

The other routines, when present, will be inserted in the list of
instructions at this point. Each of these will PRINT a message on
the screen telling you how to activate someaction and also reset
the appropriate flag variable to 1 (indicating that it is enabled).
These flags are examined in other parts of the program to see
whether or not the player is allowed to perform a particular
action.

43

Flag variables are really just like any other variable, but we only
give them the values 1 or 0. In this way they are used as
indicators{either on or off), which can be quickly tested.

The final three lines of the main routine PRINT the message at
the bottom of the screen and then wait until a key is depressed
before RETURNIng to the control program.

Section 2: ALIEN GRAPHICS

Choosing a shape for the aliens is very simple. Any of the
following routines will define a character to use as the aliens.
Each routine is accompanied by a display which shows the
character’s shape enlarged. It is important to remember at this
stage that you will want to choose just one listing from this
section and it can be any of the thirteen routines presented.

ALIEN FIGHTER
Fig. 3.2a

128

<+ N ©
© M =

14
31
126
31
14

44

Listing 3.2a

1100
1110
1120
1130
1149
1150
1160
1179
1120
A,G

1199

REM ¥X¥KKKXKXKXKXNK
REM %ALIEN FIGHTER¥

REM H¥X¥RHXXRXRRKNRK

DATA ©,3,14,31,126,31,14,3
FPG=2:N=1:GOSUE 9090

REM H%H¥XHXHEXRKEKERKRRKRK
REM ¥STORE IN ARRAY 'A’%
REM ¥XKKXKKKKEXKXKXKRKKRK
DIMA (1) :GET (@, 144) - (7,151,

RETURN

ALIEN BUG
Fig. 3.2b

o
~N

40

84
56
254
56
34

Listing 3.2b

11909
1119
1129

REM ¥¥¥%%X¥XX%%
REM ¥ALIEN BUG¥
REM ¥¥¥XXXXXXXX

1120

1140
1150
1169
1179
1180
A,G

1199

DATA 40,16,84,56,254,56,384,

FPG=2:N=1:GOSUB 90900

REM HXHXHXHXHXHRHRHRHRNK
REM ¥STORE IN ARRAY 'A'¥
REM HEKEXKKEXKKERRKRHRNK
DIMA(1):GET(8,144)-(7, 151),

RETURN

ALIEN FLY
Fig. 3.2c

@
N
- ©

N ©
M = o ¢ N -

36

24
60
30
153
165
195

Listing 3.2¢

11009
11109
1120
1130
5.9

1149

REM ¥X¥XXRKRHXE
REM %ALIEN FLY¥
REM ¥X¥XKXKXHXK
DATA 36,24,40,90,153,165,19

FG=2:N=1:G0OSUB 9009

45

46

1158 REM ¥XXEXKXXRERXRERKRKRE
11680 REM ¥STORE IN ARRAY 'A’¥*
1170 REM ¥XXEXKKXKERXRERKRKRK
1189 DIMA(1;:GET(g,144)-(7,151),
A,G

1199 RETURN

ALIEN DESTROYER
Fig. 3.2d

128

T N ©
O M — 0O <+ N —

28
20
99
42
34
54
20

Listing 3.2d

1108 REM ¥XXERKRXXEXKRKRKK
1110 REM %ALIEN DESTROYER¥

1120 REM ¥XXEXRKAKRKEXRKRKK

1139 DATA 28,20,99,42,34,54,20,0
1149 PG=2:N=1:GOSUB 99990

1158 REM X¥XXRXXEXERERKXKRKKRNK
1168 REM ¥STORE IN ARRAY 'A’¥
1179 REM ¥EXEXEXERERXRERKRKRE

1189 DIMA(1):0GET(g, 144)-(7,151),

A,G

1199 RETURN

ALIEN SKULL

Fig. 3.2e

a

N T N ©O

- O M - O N -
60
126
219
255
231
126
36
60

Listing 3.2e

1199 REM ¥¥¥¥HH¥HHH¥¥%

1119 REM ¥ALIEN SKULL¥

1120 REM ¥¥¥HXXKHXXXXX

1130 DATA 69,126,219,255,231,126

, 36,60

1149 PG=2:N=1:G0OSUB 9999

1159 REM ¥¥XHXHXHXHXHXXXKXXXX

1169 REM ¥STORE IN ARRAY 'A’¥

1179 REM 3¥¥HHHHHHHHHHHH %% ¥ %%

1189 DIMA(1) :GET (9,1494)-(7,151),

A,G

1199

RETURN

47

48

ALIEN INSECT
Fig. 3.2f

128
64

129

Listing 3.2f

1199
1119
1129
1130
129

1140
1150
1160
1179
1180
A,G

1199

REM ¥XXEXKXERKRNRE
REM ¥ALIEN INSECT#*
REM ¥XXKXKXXRKXKRR
DATA 129,66,36,24,24,60, 66,

FPG=2:N=1:GOSUE 9090
REM ¥EXERRKERRKRRRRRRRNR
REM %STORE IN ARRAY A’%
REM HAKEKXEAKXKXKXKKKKRKK
DIMA(1):GET(g,144)-(7,151),

RETURN

49

ALIEN HELICOPTER
Fig. 3.2g

]

Listing 3.2g

1199
1119
1120
1139
)
1144a
1150
1160
1179
1150
A,G
1199

REM XXX XHHHHXXXKHHXXX
REM ¥ALIEN HELICOFTER¥
REM %X XKHHHHXXXKHHXXX
DATA 0,0,246,33,126,120,112

PG=2:N=1:G0O5UB %2999

REM ¥XXXXKKKHHXXXXXXXKHXX
REM ¥STORE IN ARRAY 'A’¥
REM %H36KH 3K KX KKK HH KK XXX
DIMA‘1) :GET(F,144)-(7,151),

RETURN

50

ALIEN INVADER
Fig. 3.2h

128

20
28
62
127
62
28
42
73

Listing 3.2h

1100 REM X¥ERERXRRKRERNK
1119 REM ¥ALIEN INVADER¥*

1120 REM ¥¥XXXKKXKXKRKRK

1130 DATA 20,28,62,127,62,2E,42,
73

1149 PG=2:N=1:GOSUB 90900

115G REM K%KEXRKERKEEKKERKKRN
1160 REM ¥STORE IN ARRAY 'A’#*
1178 REM ¥ERXRRERXRERKRRRRKKRE
1160 DIMA(1):GET(@,144)~(7,151),
A,G

1190 RETURN

51

ALIEN BATTLESHIP
Fig 3.2i

Listing 3.21

1100
1110
1120
1130
24
1149
1150
1160
1170
1180
A,G
1199

REM X%XERRHKX XX RKKRRHKAN
REM *ALIEN BATTLESHIP*
REM %¥ERKEX XX KR KKK KRH
DATA 0,0,195,153,90, 189,24,

PG=Z2iN=1:GOSUB 90990

REM %%%%HHHHHHHHHHHH XK XX
REM ¥STORE IN ARRAY ’A’ %
REM %%X%HHHHHHKHHHHHAXXK
DIMA(1):GET(@,144)-(7,151),

RETLIRN

52

ALIEN CRUISER
Fig. 3.2

128

16
186
124
16
56
124
56

16

Listing 3.2f

1109
1119
1129
1139
6,16
1192
1150
1160
1179
1150
A,G

1199

REM X¥A¥XXXXXRXRKRNK
REM ¥ALIEN CRUISER¥
REM X¥X¥XXAXXRXRKRNK
DATA 16,186,124,16,56,124,5

PG=2:N=1: GOSUE 9099
REM ¥XXXRXRXRXRXRRRRRRKR
REM ¥STORE IN ARRAY 'A'¥
REM ¥XXERKRERERHRXRRERKR
CIMA(1):GET(g,144) -(7,151),

RETURN

ALIEN SPIDER
Fig. 3.2k

129
66
36
90
189
90
255
153

Listing 3.2k

1100 REM X%X¥KEKKKXKKKR
1119 REM %ALIEN SPIDER¥*

1120 REM X%¥ERKERRRRRKK

1130 DATA 129,66,36,90,189,99, 15
5,153

1147 PG=2:N=1:GOSUB 99090

1150 REM X%XXXRXXEXRXKRRERRNK
1160 REM %¥STORE IN ARRAY 'A’%
1170 REM RE¥ERRERRHERERRRKRNK
1180 DIMA(1):GET(g,144)-(7,151),
A,G

1190 RETURN

54

ALIEN TANK
Fig. 3.21

128

63
124
124
124
84
16
16

Listing 3.21

1100 REM X¥ERXRXRRKRX
1110 REM ¥ALIEN TANK#¥

1120 REM X¥XRXRXRRKRX

1130 DATA 9,48,124,124,124,84,16
, 16

1149 PG=2:N=1:GOSUB 90900

1150 REM X¥XRXEXERXEXRXERERRR
11640 REM ¥STORE IN ARRAY 'A’¥
1170 REM ¥¥XXXXXXXRKKXKRKRHKKRN
1180 DIMA(1):GET(9,144)-(7,151),
A,G

1199 RETURN

55

ALIEN FROG
Fig. 3.2m

128

165
66
66
36
24
69
30
1239

Listing 3.2m

1100 REM X¥XAXXRXKANRK
1119 REM *ALIEN FROG¥

1120 REM ¥XXXXRXXRRKR

1130 DATA 1&5,66,66,36,24,640,989,
129

1140 PG=2:N=1:GOSUB 90090

1150 REM %¥EAXERXEAXERXERRKRN
1160 REM %¥STORE IN ARRAY ’A’#%
1170 REM X¥EXXRXERXXRXERERRKRN
1180 DIMA(L);:GET (8,144)-(7,151),
A,G

1199 RETURN

All the ALIEN graphics routines simply define a graphics
character for the alien (for further explanation of this see Chapter
6). This character will be PUT on the screen at the alien’s
position.

56

Section 3: PLAYER GRAPHICS.

This is exactly the same as choosing a shape for the aliens. Any of
the following routines will define a character for use as the player.
Each routine is, once again, accompanied by a display to show
the character’s shape enlarged. Remember that you want the
player to look different from the aliens. Some shapes might be
more suitable than others depending on whether you are dodging
or firing. You also need to take the background into account. Of
course, it is possible to have a surfer blasting away with fireballs
over a city skyline but it will look a bit strange. You need to
choose just one listing from this section and it can be any of the
fifteen routines presented.

PLAYER HELICOPTER

Fig. 3.3a

@

S8 %20 v~ -
5}
5}
246
33
126
120
112
5}

Listing 3.3a

1200 REM ¥EXKKEREXXKRRKRRKRK
1219 REM ¥PLAYER HELICOPTER¥
1220 REM ¥EXKEXKXREEXKXKKRNE
1230 DATA 9,0,246,33,126,120,112
, 9

1249 PG=2:N=1:GOSUB 9999

1250
1269
1279
128
E,G
1259

57

REM HXHRHRERHRHRHRHRHRNK
REM ¥STORE IN ARRAY 'B’#¥
REM ¥R¥RHRERERHRXRRRRRNR
DIMB(1) :GET(S, 144)~-(7,151),

RETURN

PLAYER TANK
Fig. 3.3b

128

16

16
34
124
124
124
63

Listing 3.3b

1209
1219
1229
1239
8,90

1249
259
1269
1279
1289
B,G

1299

-

REM ¥XX¥RXEXKXKRK
REM *FLAYER TANK%¥
REM ¥XXXAXXXKKKRK
DATA 16,16,84,123,124,124,6

PG=2:N=1:GOSUE 9990

REM #%¥EXRKXRKERXKRKKRKE
REM %STORE IN ARRAY 'B’%
REM %¥EXRXKAXERRERRKKRRK
DIME(1):GET(@, 144)-(7,151),

RETURN

58

PLAYER SPIDER
Fig. 3.3¢

e}
~N

T N ©
© M = 0O +F N =

129
66
36
90
189
90
255
153

Listing 3.3¢

1206 REM ¥%¥%¥¥HK¥HHHHXKK¥%

1219 REM ¥PLAYER SPIDER¥

1220 REM X¥XXXXRXXRRXRXKRK

1230 DATA 129,66,36,90,189,90,25
5,153

1248 PG=Z2:N=1:GOSUE 9888

1250 REM XAXXXRXXRXXXRERRRKRN
1260 REM ¥STORE IN ARRAY 'B’#%
127@ REM XAXEXRERRXEXXKRRRKAN
1220 DIMB(1):GET(,144)-(7,151),
B,G

1299 RETURN

PLAYER FROG
Fig.3.3d

128

<
©

N ©
™M = O <+ N ~—

123

90
60

24

36
66
66
165

Listing 3.3d

1299
1219

22@
1239

-
o

N O

Q Qan

MR RN)

h) -
N0
Q

- e e e
Q

REM X¥%¥¥XXXXXXKRN
REM ¥PLAYER FROG¥
REM ¥XX¥EXERKXKKRK
DATA 129,90,60,24,36,66,66,

FG=2:N=1:GOSUB 9999

REM %%%HHHHXXKKKHXXXKXXXK
REM ¥STORE IN ARRAY ’*B’'¥
REM %%%%HHHHHXXXHHHHXXXXK
DIMB(1):GET(9,144)-(7,151),

RETURN

60

PLAYER SKULL
Fig. 3.3e

60

126
219
255
231
126
36

60

Listing 3.3e

1200
1210
1229
1239

REM #%¥EXXKKXKKXKRE
REM ¥PLAYER SKULL¥*
REM ¥XXXKXKKXRKXKK
DATA 60,126,219,255,231,126

36,60

124g
1258
1240
1278
128

B,G

1299

PG=Z2:iN=1:G0SUB 7009

REDM %% %K%K KKK XXX XXX
REM ¥STORE IN ARRAY ’'B’%
REM ¥¥HHHHXXXKK KKK XXXKKX
DIMB(1):GET(@,144)-(7,151),

RETURN

617

PLAYER AUTOMOBILE
Fig. 3.3f

128

T N ©
© M — © <+ N -

120
34

254
255
1e8

Listing 3.3f

12
12
12
12
23
12
12
12
12
12
B

1

REM %¥KXKKXREXKEEKKXKRKR
REM %¥FLAYER AUTOMOBILE#*
REM X¥%XERXEXRERRERRERNRK
DATA ©,0,0,120,34,254,255, 1

[
Q

[
QaQ

FG=2:N=1:GOSUB 7999

REM %¥HHHHHHHHHKHH XK KX X%
REM ¥STORE IN ARRAY 'B’#¥
REM %%3H%HHHKHXHHHH XK KX X%
DIMB(1):GET(©,144)-(7,151),

[N

J O
QuQaQ

o0

S
-
(]

RETURN

62

PLAYER AIRPLANE
Fig. 3.3g

28
62
127
127

Fig. 3.3g

1209 REM X¥X¥XXXXXXXKHHXNXXXX

1219 REM ¥FLAYER AIRFLANE¥

1220 REM ¥¥¥¥XXHXXHXXHXXXX

1230 DATA 8,8,8,28,62,127, 127,8
1249 PG=2:N=1:G0OSUB 99099

1259 REM X¥XXXXXXXXAXXXXXXXXX
1260 REM ¥STORE IN ARRAY ’'B'¥
1270 REM ¥¥XXXXHKXXHXXXHXXHXXK¥
1289 DIMB(1):GET(9,1494)-(7,151},
B,G

1299 RETURN

PLAYER FLY
Fig. 3.3h

s3]
N T N ©

36
24
60
30
1S
153
165
195

Listing 3.3h

1209 REM ¥XXXXXXXXXXX
1219 REM *PLAYER FLY¥
1220 REM X¥XXXXXXNXNXXX
1239 DATA 36,24,60,99,133,153,16

5,195

1240 PG=2:N=1:GOSUB 9000

1250 REM X%¥EXXEXREXRXERKKRKK
1260 REM %¥STORE IN ARRAY 'B’#%
1270 REM X%XEXRKERXEXKERRKKRN
1280 DIMB(1):GET(@,144)-(7,151),
B,G

1299 RETURN

64

PLAYER BATTLESHIP
Fig. 3.3i

128

O
©

153
153
255
153
24

60

126
126

Listing 3.3i

1200 REM ¥¥XXXXKXERKRKKXKRHK
1218 REM ¥FLAYER BATTLESHIF¥
1228 REM ¥ERKRERERERRERKRKKRE
1230 DATA 153,153,255,153,24,60,
126,126

1240 PG=2:N=1:GOSUE 7900

1250 REM ¥EXKXKEKRKEKERKRKRNK
1260 REM ¥STORE IN ARRAY 'B'#%
1270 REM ¥EXKXKEKREEREXKXKRNK
1236 DIMB(1):GET(g,144)-(7,151),
B,G

1270 RETURN

PLAYER COWBOY LEFT
Fig. 3.3

T N ©
O M —= 0 F N -

128

24
60
24
216
56
20
54

Listing 3.3f

1200 REM 3%%H3%HH36 K556 K556 %% %%
1219 REM ¥FPLAYER COWBOY LEFT*
1220 REM %¥%%%HHHXHHH KKK KK XK XX
1239 DATA ©,24,60,24,216,56,20,5
4

1249 FG=Z:N=1:GOSUB 9999

1250 REM XXXXXXHRHHHHHHHH¥HNX¥
12690 REM ¥STORE IN ARRAY ’'B'#¥
1276 REM H%¥HHHHHHHHHHH XK HHKX¥
1239 DIMB(1):GET(g,144)-(?7,151),
B,G

1299 RETURN

66

PLAYER COWBOY RIGHT

Fig. 3.3k
a3
~N

24

69

24

27

28

24

24

28
Listing 3.3k
1200 REM ¥¥¥HHHHHHHHHH %KX X% ¥ %%
1219 REM ¥PLAYER COWBOY RIGHT*
1220 REM H¥3%HHHHH K36 %K% %K% %% %
1230 DATA 24,60,24,27,28,24,24,2
3
1249 FG=2:N=1:G0SUB 99909
1250 REM H%%HHHHHHH %K K%K KX %%
1269 REM ¥STORE IN ARRAY ’'B’#%
1279 REM H%3%HHHH KKK %% K% %% %%
1280 DIME(1):GET (g, 144)-(7,151),

B,G
1250

RETURN

67

PLAYER FIELD GUN

Fig. 3.31
@
N v N ©
— © M = 0 ¢ N o~
2
2
36
24
16
124
218
Listing 3.31
1290 REM ¥¥¥XHHHHHHHHHHX¥XX

1210
1229
12308
249
1250
1260
1278
1289
B.G

12990

[

REM *¥PLAYER FIELD GUN#¥

REM #%XXXXXEXXEXRKKRKK

DATA 9,1,2,36,24,16,124,218
FPG=2:N=1:GOSUE 999090

REM %¥¥XRXEXEXRERRKRRRKR
REM ¥STORE IN ARRAY ’B’#*
REM %%XXEXEXKEERXXRKERRK
DIME(1):GET(9,144) -(7,151),

RETURN

68

PLAYER SKIER
Fig. 3.3m

128

o~
™

16

s
©

16
32
249
18
60

16
32

Listing 3.3m

1200 REM XXXEXXKEXKKXKKK

1210 REM %PLAYER SKIER¥

1220 REM ¥¥XXXXAXRXRRXKR

1230 DATA 16,32,249,18,60,8,16,3
2

1249 PG=2:N=1:G0SUB 9000

1250 REM ¥¥EXKEXRKEEKERRKKKRKK
1260 REM %¥STORE IN ARRAY ’'B’%
1270 REM ¥XXKXXAXXXKEREAXRKKRK
1280 DIMB(1):GET(@,144)-(7,151),
E,G

1299 RETURN

PLAYER SURFER
Fig. 3.3n

oo}
o~

18
124
144

Listing

1200
219
1220
1230
5,64
ag
5@
1269
1278
128¢
B,G

1299

[

-

2
2

16
40
30

64

3.3n

REM %¥%%HHXHHXKKH XXX
REM ¥PLAYER SURFER¥
REM ¥¥XXXXKHKXXXXXKK
DATA 18,124,144,16,49,80,25

PG=2:N=1:GOSUB 9099

REM %%%%HHHHH KX XXX KX¥
REM ¥STORE IN ARRAY 'B’'%
REM ¥XKKHHHHHHHHHHXXXXXKXK
DIMB(1) :GET(@,144)-(7,151),

RETURN

69

70

PLAYER SAND YACHT
Fig. 3.30

128
64
3

©
— 0 ¢+ N -

16
24
28
30
16
254
65

Listing 3.30

1200 REM HREREXEKERXXERKXRKRK
1219 REM ¥FLAYER SAND-YACHT¥

1220 REM XXKAKERKXKXKRKRKRKRKN
123@ DATA 16,24,28,30,16,254,65,
o

1249 FG=2:N=1:GOSUE 9090

1250 REM ¥ERERKERXRERKRHRRRNRN
1240 REM ¥STORE IN ARRAY 'B’#¥
1270 FEM ¥ERERRRRRERXRRRRRRRR
1250 DIMB(1):GET(@,144)-(7,151),
B,G

1299 RETURN

Allthe player graphics routines simply define a character for the
player (for further explanation of this see Chapter 6). This
character will appear on the screen at the player’s position.

71

Section 2: BACKGROUNDS

All the following routines set up a background scene against
which your game will be played. This is fairly important,
especially when it comes to dodging games. A skier switching
back and forth through the pines whilst dodging spiders is going
to have a harder time than one on a totally black background with
no stationary objects to avoid. You need to choose just one of
listings 3.4a to 3.4h, plus any of listings 3.4i, 3.4j and 3.4k
according to whether or nor you want to display SCORE, AMMO
and FUEL information. One more point to note is that each listing
includes line 25 from the initialisation section of the program,
which sets or resets the flag variable Nv. This is an INVERSE flag
and it swaps the foreground/background colours. These are
normally white on black, but if we want a ski-slope, for example,
then we obviously want the background to be white, not black.
This flag also ensures that the characters are coloured the right
way round. We will say more about this in Chapter 6. Each of the
listings, apart from the first (totally black), is accompanied by a
black and white representation of an example scene produced by
that listing. This should help you decide which one to use.

TOTALLY BLACK
Listing 3.4a

25 NV=9g

1399 REM %%XHKHHHHHHKKXXXXX
1395 REM % TOTALLY BLACK *
1319 REM %% 33665 % %%
1359 PMODE4, 1:PCLSNV:SCREENL, 1
1399 RETURN

72

SEA-SCAPE

Fig. 3

.4b

-~

-

SN

N

o

-~

.ty

Listing 3.4b

25 N
1309
13905
1319
1315
1320
1330
1340
u,6
1350
1360
1379

1389
13990

v=1

REM %¥%%%%HHKKX%%
REM ¥ SEA-SCAPE *
REM %%%%%%% %K%K %%
IF GM>@ THEN 13590
PG=2:N=1:GOSUB 9999

DATA ¢,0,9,0,8,20,98,129
DIMU(1):GET (@, 144)-(7?,151),

PMODE4, 1: PCLSNV:SCREEN1,9

FOR @=@ TO 25

X2=RND (32)%8-8: Y2=RND (22) ¥8
-8IPUT(X2,Y2) - (X2+7,Y2+7) ,U,PSET

NEXT @
RETURN

DESERT
Fig. 3.4¢

73

L

&P

&

i

Listing 3.4c

25 NvV=1

1300
1385
1319
1315
1320
133
4
1349
u,G
1359
1369
370

REM ®XXKXKXKKK
REM ¥ DESERT %

REM ¥X¥X¥XKKX¥

IF GM>@ THEN 135¢
PG=2:N=1:GOSUB 9000

DATA ¢,16,18,26,94,88,120,2

DIMU(1):GET(@,144)-(7,151),
FPMODE4, 1 : PCLSNV: SCREENL , 9

FOR @=@ TO 2S5
X2=RND (32)%8-8: YZ=RND(22) ¥8

-8iPUT(X2,Y2)~ (X2+7,Y2+7),U, PSET

1389
1379

NEXT @
RETURN

74

SKI SLOPE

Fig. 3.4d
F)
F Y
F y
F Y
A a4
4 A &
4 A&
A a
» &
A
Y
. a4
4
|_a r il
Listing 3.4d
25 NvV=1
1390 REM XX¥XXXXXXX¥XX

1395
1319
1315
1329
1339

REM % SKI-SLOFE *
REM ¥%¥XXXKXKKXNK

IF GM>@ THEN 1350
PG=2:N=1:GOSUB 9900

DATA 16,56,56,124,124,254,2

54,16
1349 DIMU(1):GET(@,144)-(7,151),
u,G

1350 PMODE4,1:PCLSNV:SCREENT, 1
1360 FOR @=8 TO 25

1379 X2=RND(32)%8-8:Y2=RND (22) ¥8
-8I1PUT(X2,Y2) - (X2+7,Y2+7) ,U,PSET
1380 NEXT @

1399 RETURN

LARGE STARS
Fig. 3.4e

75

o

Listing 3.4e

25 NV=g

1309
1305
1319
1315
1320
133

,137
1340
u,G

1350
1360
1370

REM *¥XXREXRKRKRKRKNKR

REM % LARGE STARS %

REM HXKKKXKKKKKKKKK

IF GM>@ THEN 1359
FG=2:N=1:GOSUB 9000

DATA 145,82,52,31,248,44,74

DIMU(1):GET(@,144)-(7,151),
PMODE4, 1: PCLSNV: SCREEN1, 1

FOR @=@ TO 25
XZ=RND(32Z)%¥8-8:YZ=RND(Z2) ¥8

-8i1PUT(X2,YZ) - (X2+7,Y2+7) ,U,PSET

1389
1399

NEXT @
RETURN

76

SMALL STARS
Fig. 3.4f

Listing 3.4f

25 NvV=g

139009
139S
1310
1359
13690
1379
=0))

1380
1399

REM XXXXXXXXXXXXXXX

REM ¥ SMALL STARS ¥

REM XXXXXHXXXXXXHXKX
FMODE4, 1 : FCLSNV:SCREEN1, 1
FOR @=9 TO 25

PSET (RND (255) ,RND (175), - (NV

NEXT @
RETURN

NIGHT SKYLINE
Fig. 3.4g

77

Listing 3.4g

25 NvV=g

1399 REM %¥¥HHKHHKHHKHHX¥%X

1395 REM ¥ NIGHT SKYLINE %

1319 REM ¥¥¥H¥HHHHHHHHXXXK

1315 IF GM>@ THEN 1359

1329 FG=2:N=1:GOSUB 9999

1320 DATA 255,171,255,181,255,21
3,255,181

1349 DIMU(1):GET(@9,144)-(7,151),
u,6

1359 PMODE4,1:PCLSNV:SCREEN1, 1
1369 FOR @=@ TO 248 STEP 8

1365 FOR Y=@ TO (RND(3)-1)%¥8 STE
F 8

1379 PUT(@,160-Y)-(Q+7,167-Y),U,
PSET

1389 NEXT Y:INEXT @

1399

RETURN

78

CITY SKYLINE
Fig. 3.4h

Listing 3.4h

25 Nv=1

1309
1305
1319

3iS
1320
1339

REM XXXXXXXXXXXXXXXK
REM ¥ CITY SKYLINE ¥
REM X%XXXXXXXXXXXXXX
IF GM>@ THEN 135@
FPG=2:N=2:GOSUB 7999

DATA 2,2,3,50,179,25,25

5,3,8,62,62,255,255,255,255

1349 DIMU{1):GET(g,144)-(7,151),

u,G

5,25

1345 DIMT(1):GET(8,144)-(15,151)

27,6

1350 FMODE4, 1:FCLSNV:SCREENL, 1

1369

FOR @=¢ TO 248 STEF 146

1378 PUT(@, 160)-(Q@+7,167),U,PSET

79

The background routines select PMODE4 with graphics pages 1 to
4 onscreen. They then clear the screen to the background colour
(which depends on the setting of the NV flag). In the first routine,
listing 3.4a, this is all that is required. For the rest of the routines
a character for a suitable object is defined (for further explanation
of this see Chapter 6). This object is then PUT on the screen in
various random positions. (see Chapter 10). Listing 3.4f differs
from this general pattern by merely PSETing points at these
random positionsinstead of PUTting a character each time.
Listings 3.4g and 3.4h do use characters but use special methods
of determining the positions where these will be PUT to achieve
the desired effect in each case. These routines are examined
separately and in greater detail, in Chapter 4.

The last three listings PUT the status headings on the screen by
way of the PUTSTRING routine — this will be more fully explained
in Chapter S.

Section 5: START/RESTART.

This routine is not optional. We always need to have this routine
exactly as listed. This ensures that all the variables which might
be used later on are initialised whether our game takes any
account of them or not.

Listing 3.5
1400 REM XXXXXXXXXXXAXXXXXXXX

1495 REM ¥SET UF AND RESTART¥
1419 REM XXXXXXXXXXXXXXXXXXXX

80

1420 ALIENS=10:REM ¥NO. OF ALIEN
5%

1430 SCORE=9:REM *SET SCORE TO Z
ERO¥

1449 AMMO=10:REM %SET LASERS TO
FULL*

1450 FUEL=10:REM *¥SET FUEL TO FU
LL*

1460 PY=163:PX=120:REM ¥START FO
SITION OF PLAYER¥

1470 IF F=@ THEN PY=8:REM ¥CHANG
E POSITION FOR DODGING GAME¥
1475 GET(PX,PY)-(PX+7,PY+7),FB,G
IPUT(PX,PY)-(PX+7,PY+7),B,FSET
1980 DD=1:P=0:FIN=0

149€ AP=PX:YP=PY

149S RETURN

This routine essentially simply initialises all the variables used

in the game. For greater detail of what the variables are actually
used for see Appendix One. The number of ALIENS is set to 10,
your SCORE is set to zeroand you are given 10 units of AMMO and
FUEL. These variables must always be set to some starting value
even if they’re not used by the game.

PX and PY are the horizontal (x) and vertical (y) co-ordinates on
screen of the player’s character and these must be set to some
initial values. For firing games you start off at the bottom of the
screen with PY=168 (we leave some space at the bottom for scores,
etc.), and with PX=120 which is about halfway across. If the game
is not a firing game you start at the top of the screen instead, with
PY=8. Your character is now PUT on to the screen at its initial
position, but first the bit of scenery at the position is stored in the
array PB (for player background) with the GET instruction. This is
so that we can PUT the scenery backagainwhen you move. To do
this we need to know where the player was before he moved, so
we store a copy of the player’s old position in the variables XP and
YP (the reverse of PX and PY).

81

Finally we set the flags that indicate whether a new alien is
required and whether the end of the game has arrived. To do this
we set DD (for dead) to 1 and set FIN to 0. (The French is because
END is a special BASIC word for the DRAGON computer, so we
cannot use it as a variable.) We also need to reset the counter
which tells us how many aliens have got past, so we set P equal to
0.

Section 6: MOVE/FIRE.

Wemust have the first, main routine from this section in our
program. If you allowed LEFT & RIGHT movement then you will
need to add listing 3.6b. Similarly listing 3.6c must be added for
UP & DOWN movement. Don’t worry if you have only allowed,
say, LEFT movement in the instructions. Just add the section for
both LEFT & RIGHT and you will find that only LEFT movement is
actually enabled. If you have chosen HYPER-drive as a mode of
movement than you will need to add listing 3.6d.

Listing 3.6a

1500 REM XE¥EXRERRRKRX

1582 REM ¥MOVE & FIRE¥

1595 REM RERERRKRXRKRK

1516 IF DD=g@ THEN 1549

1529 DD=0

1530 AY=3:AX=RND(32)%8-8: XA=AX
1535 REM %¥MOVE ALIEN¥¥

1540 IF AY<>3 THEN PUT(XA,AY-8)-
(XA+7,AY-1},AB,FSET

1545 GET(AX,AY)- (AX+7,AY+7),AB,G
IPUT (AX,AY) - (AX+7,AY+7) ,A,PSET
1550 XA=AX:AY=AY+3:IF AY=168 THE
N DD=1:FP=F+1:ALIENS=ALIENS-1
1SS5 IF DD=1 THEN PUT{(XA,AY-8)-(
HA+7,AY-1),AB,PSET

82

1560 AX=AX+8¥(RND(3)-2)
1565 IF F=@ AND AX>PX THEN AX=AX
-8:60TO 1580

1578 IF F=0 AND AX<FX THEN AX=AX
+8:61T0 1580

1580 IF AX<@ THEN AX=0

1599 IF AX»>248 THEN AX=248

1595 REM X¥XXXXXXKAXKXKKRH

1576 REM % MOVE FPLAYER %

1599 REM XXEXXXRXEXXXXXNKK

1600 A$=INKEYS$

1630 IF PX:@ THEN PX=0

1635 IF PV<@ THEN PY=g

1648 IF PX>238 THEN FX=248

1645 IF PY»165 THEN PY=168

1658 IF PY=YP AND FPX=XP THEN 168
o

1668 PUT(XP,YP) ~(XP+7,YP+7) ,PB,F
SET

1678 GET(PX,PY)-(PX+7,PY+7),FB,G
IPUT (PX,PY) - (PX+7,PY+7),B,PSET
1675 YP=PY:XP=PX

1680 K=@:IF F=1 AND As="@" THEN
K=1

1699 RETURN

The routine below allows LEFT or RIGHT movement providing
that the INSTRUCTIONS enable such movement.

Listing 3.6b

1598 REM % LEFT & RIGHT %
1602 REM ¥¥LEFT AND RIGHT*¥
1605 IF L=1 AMD A$=CHR$(8) THEN
PX=FX-2

1619 IF R=1 AND A$=CHR$(9) THEN
FX=FK+8

83

This routine allows UP or DOWN movement providing
that the INSTRUCTIONS enable such movement.

Listing 3.6¢

1597 REM % UP & DOWN ¥
1612 REM ¥¥UP AND DOWN¥¥

1615 IF U=1 AND A$=CHR$(94) THEN
FY=FYV-8

1620 IF D=1 AND A$=CHR$(1@) THEN
Py=FY+a

This next routine allows HYPER-space movement providing that
the INSTRUCTIONS enable such movement.

Listing 3.6d

1622 REM ¥¥HYFER JUMPSXX%
1625 IF H=1 AND As$="H" THEN FX=8
¥RND(31) :P=8¥RND(21)

The routine to control movement and firing is quite long and
performs several different tasks, so let’s look at them in order.
Firstly it checks whether a new alien is required (if the previous
one is dead — DD=1 — then we do need one). If we do start a new
alien then we must initialise the horizontal (x) and vertical (y)
screen co-ordinates for the alien. We set RY equal to 8 and RX
equal to a random multiple of 8 between 8 and 248. As with the
player we will need to remember the position of the alien so we
copy AX into XA. We do not need to remember the y co-ordinate
because it will always 8 less than the current y co-ordinate. Now
we set the flag to show that the alien is not dead (DD=0).

By now wehavea live alien on our hands (well, on the screen
anyway) so we want to move it. We first PUT back the
background (array AB) over the alien to erase him from his old

84

position, and then we GET the background for his new position,
before PUTting the alien at his new position. We must now
calculate the next position for our alien. We add 8 to AY to move
him down the screen. At this point we test whether he has
reached the bottom of the screen (AY=168). If he has, then he got
past us, so we add one to P (the past variable), and declare that
alien dead (DD= 1). We also take one of f the number of aliens left
(ALIENS=ALIENS-1). If the alien is dead then we PUT back the
scenery on top of him to erase him (or bury him).

Assuming he’s not dead we would like our alien to move from
side to side as he descends. If it’s a dodging game (not a firing
game, so F=0) we want the alien to move towards us so we test
which side of your x position (PX) he is and alter AX accordingly.

If he is directly above you, or if it a firing game, then we will
alter his horizontal position by onc either side at random. Having
changed the alien’s position we check that he hasn’t gone off the
side of the screen and reset AX if he has. (Some funny things
happen if you try to PUT off the screen.)

Now we come to moving the player. It is at this stage that we
will encounter some of the lines from the other listings when they
have been added. If a particular sort of movement is allowed we
check to see if the appropriate key is being pressed and then alter
PX or PY accordingly. If HYPER-space is included and the H key
has been pressed then we choose new values for PX and PY at
random (again in multiples of 8). Once again we must check that
the new co-ordinates are still on the screen and reset them if they
are not. Finally we PUT back the background (array PB) at the
player’s old position, GET the background at his new position,
and PUT the player at the new position. Note that we do not do
this if the player has not moved since the last time around. This is
to prevent the player graphic from flickering when stationary.

The final action in this section is to check the FIRE button. If
this key has been pressed then we set the flag K to ! to indicate
that a shot is to be fired.

85

Section 7: DETECT A HIT

This routine can have two completely different forms. This
depends on whether we are playing a firing game or a dodging
game. In the latter case what we need to detect are collisions
between the player and other objects. These objects may be
background objects or aliens. The first routine (listing 3.7a) in
this section deals with the detection of this sort of collision and
should be used if yours is a dodging game.

If we are playing a firing game then we might need to move a
missile up the screen and see if this hits any alien. For this type of
game we can pick either of the other two routines in this section
(listings 3.7b or 3.7¢). These shoot bullets and lasers respectively.
Later, in Chapter 6, we will add another two routines to our
selection which shoot bombs and fireballs, but these will have to
wait until we have some techniques under our belts.

Listing 3.7a

1708 REM ¥EXFEXXXXRXKRKR
1701 REM %CHECK FOR HIT¥

1792 REM % DODGING GAMEX

1705 REM ¥¥XXXXXXXXXRKKR

1719 HIT=9

1720 PMODES,2:N=255%NV

1739 PUT(@,144)-(7,151),FB,PSET
1740 FOR Y=7680 TO 7994 STEP 32
1750 IF PEEK(Y)<>N THEN HIT=1
1760 NEXT

1776 FMODE4,1

1750 RETURN

Listing 3.7b

1709 REM XXXXXXXXXXXXXXX
171 REM ¥CHECK FOR HIT¥
1792 REM ¥ BULLET *
1795 REM XXXXXXXXXXXXXXX

86

1710 HIT=@:IF K=@ THEN 1790
1715 SOUND199, 1

1720 BX=PX+3:BY=167

1725 PSET(BX,BY, - (NV=0))

1730 BY=BY-4

1735 PSET(BX, BY, - (NV=0))

1740 PSET{BX,BY+4,NV)

1745 IF XA=FX AND AY/8=INT(BY/8)
THEN HIT=1:G0TO 1755

1750 IF BY>11 THEN 1739

1755 PSET(BX,BY,NV)

1799 RETURN

Listing 3.7¢

1700 REM X%X¥XAXEXXXKARN
1701 REM ¥CHECK FOE HIT#*

1792 REM * LASER *

1705 REM ¥XXRXEXXRXKARKKR

1719 HIT=@:IF K=g THEN 1799

1715 SOUND1@@, 1

1720 BX=PX+3:BY=167

1730 COLOR(1 AND NV=0), 1:LINE(BX
,BY)-(BX,8),FSET

1745 IF BX>XA-1 AND BX<XA+8 THEN
HIT=1

1755 COLORNV, 1:LINE(BX,BY)-(BX,8
), PSET

1799 RETURN

The first routine in this section works by examining the
background underneath the player. This is stored in the array PB.
There is no easy direct way of examining an array which has
been used with GET, so what we do is to PUT the array onto the
hidden screen (PAGE 6) and then examine that part of the screen
for any foreground colour. If we find any then obviously the
player has hitsomething.

87

The second routine in this section first checks to see if the fire
key was pressed (when we will have K=1). If it was, a bullet is
fired, starting with a bleep noise, up the screen. The position of
the dot is tested against the alien’s position to see if it has hit him.
If ithasn’tit keeps going until it gets to the top of the screen. If it
hits the alien the flag HIT is set to 1.

The third routine (listing 3.7c) checks whether the fire key was
pressed and, if so, fires a laser using the LINE command. This is
accompanied by a bleep. The horizontal position of the laser is
checked against AX and if the two coincide then HIT is set to 1.

Section 8: EXPLOSIONS

This section will be called from the control program only if a HIT
has occurred. In this section we wish to make some sort of noise
and possibly give a visible signal to indicate that this has
happened. You may choose any of the first ten routines (listings
3.8a—), as your main routine for this section. It is very
important to remember, whichever one of these you choose, that
listing 3.8k must also be added if you have a FIREing game. This
routine will wipe out the dead alien.

Listing 3.8a

REM ¥¥¥¥XXXHKK¥
REM *EXFLOSION¥
REM % BURBLE ¥
REM ¥¥¥¥¥XXXXHXK
F$="TSO02L 1 2AGBEDFADFH#" :F$=

e ke e e
0000w
- 9 7
QaON~8

FE+F$
1820 PLAY F$
1899 RETURN

88
Listing 3.8b

SOT REM XEHXXXXKKHXXX

12891 REM ¥ EXPLOSION *%

1892 REM * TRILL *

1895 REM X¥XXXXHXAXXNXK

12819 F$="T1SO0OSL12CFHCFHCFHCFHCF
HCFHCFHCFH"

1220 FLAY F$

1879 RETURN

Listing 3.8¢

1500 REM XXXXXXXXXXX

12891 REP ¥EXFLOSION¥

1882 REM ¥ HIT *

1295 REM ¥¥XXXXXXXXK

1519 F$="T15001L3IOGFHFEDHDCHC"
1823 FLAY F$

1399 RETURN

Listing 3.8d

Q
Q

REM ¥¥XXXXKKHHHKX
REM ¥ EXFLOSION %

REM ¥START AGAIN¥

REDM ¥¥XHXKHXHHXHX
F&="T303L&GEL1SAL&GE"
PLAY F3$

} RETURN

[SUSuyey
00D mo 0 M M
R ~0aQ
TQQunN -

.

Listing 3.8¢

120EF REM ¥XXXXXXXXXXXX
1801 REM ¥ EXFLOSION %
1302 REM ¥ALIEN FIRED¥
1805 REM XXXXXXXXXXKNKK

1819

F$="T10904LSCCHDDHEFFHGFHFE

DHDCHC"

1829

FLAY F$

1899 RETURN

Listing 3.8

1899
1801
1802
1305
1819
1820
1899

REM %¥¥¥HHHXXXHXHH

REM ¥ EXFLOSION *

REM ¥ RASFBERRY *

REM ¥%X%XXHHXXXXX
F$="TSPOIL4CFHCFHCFHCFHCF#H"
FLAY F$

RETURN

Listing 3.8¢g

1809
1891
1802
1895
1819
1829
1839
349
1299

[

REM %% XXX XX HH%%
REM ¥ EXPLOSION *
REM % FLASH *
REM #%¥¥% %X XX X¥
FOR @=1 TO 19
SCREEN1,9:S0UND1Sg,
SCREEN1, 1:S0UND199,
NEXT @

RETURN

Listing 3.8h

1300
1801
1892
18095
1819

c20
iedo
1899

REM %%%K%H%HHHHH%%
REM ¥ EXFLOSION %
REM * BLIFS *
REM %%%%%H%HHHHHKX
FOR @=1 TO S
SOUNDIZ@+RND (109) , 1
NEXT @

RETURN

89

90
Listing 3.8i

1809 REM XXXXXXXkXXXXX¥
1891 REM ¥ EXFLOSION %
1892 REM ¥ BLIF *
1885 REM ¥XXXXXXXXXNXKKX
1819 FOR @=1 TO S

1820 SOUND1S@,1

1848 NEXT @

1899 RETURN

Listing 3.8j

1899 REM XX¥XXXXXXXXXXX

1891 REM ¥ EXFLOSION *

1232 REM ¥ SIREN *

1885 REM XXXXXXXXXXX¥K

1819 FOR Q=1 TO S

121T FOR V=188 TO 139 STEF S

1829 SOUNDY, 1

1225 NEXT ¥

1339 FOR Y=130 TO 199 STEF -5
1235 SOUNDY, 1

12849 NEXT ¥

1858 NEXT &

127@ RETURN

This routine must be added if there is FIREing in vour game.
Listing 3.8k

1889 IF F=1 THEN FUT (XA,AY-8)-(X
A+7,AY-1) ,AB,FSET:DD=1:ALIENS=AL
IENS-1

All the routines in this section use either the SOUND or PLAY
command to produce the noises. PLAY is the more versatile by far

91

of these two commands and is hence used most of ten, but SOUND
can still be very effective for certain effects.

The routine 3.8k simply PUTs back the background over the
alien to erase him when he has blown up. It thensets the flag DD
to 1 to tell the move routine to start a new alien, and finally, takes
one off the number of ALIENS left.

Section 9: SCORE ROUTINES

If you have HIT an alien there is obviously the question of how
much was SCOREd. Well, these routines are fairly simple and give
you the choice of SCOREing one, five or ten points for each alien
you HIT. If yours is a dodging game then you will not want to
SCORE at all so use the first routine (listing 3.9a). Otherwise you
can pick any of the other routines from this section.

Listing 3.9a

1700 REM XXXXAXXXXXXXKKXNXNXX
1991 REM ¥SCORING ROUTINE¥
1202 REM ¥ NOQT USED *
1795 REM XXXXXXXXXXXKKKNXNXX
1779 RETURN

Listing 3.9b

REM XERXXXRXXXXXAXXAX

REM ¥SCORING ROUTINEX

REM ¥ 1 POINT *

REM ¥¥XXXXXRXXXXKKKXKX

IF HIT=3 0OR F=g THEN (990
SCORE=ZCIORE+L

92

Listing 3.9¢

1722 SEM RXXXHRXXXXHXXXHNXXKX
{791 R *ZCORING ROUTINEX
1702 REM % S FOINTS *

1725 REM X¥XXXXXXXXXXXXXXX
1919 IF HIT=@ OR F=@ THEN 1999
192¢ SCORE=SCORE+S

199¢ FETURN
Listing 3.9d

1900 REM %¥KKHHHHHHHHHHHHHHX
1992 REM *¥SCORING 19 POINTS*
19205 REM ¥¥KHHHHHHHHHHHHHHXXX
19210 IF HIT=@ OR F=@ THEN 1999
1920 SCORE=SCORE+19

1999 RETURN

All the routines in this section (except 3.9a) check tosee if you
are playing a FIREing game and whether you just scored a HIT on
an alien. If you did then the required number of points are simply
added to your SCORE.

Section 10: FUEL AND AMMUNITION

Insomegamesyou can fail your mission because of lack of FUEL
or AMMO. If you donot wish toalterthe quantities of either of
these then you can select just the first routine from this section.
If, however, you wish to alter the quantity use listing 3.10b and
add the appropriate listings from the rest of this section. Note
that you can only choose one out of each of the pairs of routines
(listings 3.10d and 3.10e for AMMO and listings 3.10g and 3.10h
for FUEL) for increasing the quantities, since these occupy the
same line numbers.

Listing 3.10a

0 REM XEXXXXXXXXXXXXXXXXXXX
2 REM ¥FUEL AND AMMUNITIONX
I REM ¥ NOT USED *
2005 REM XHFHHHHHHHHHHHHHXXXXX
26729 RETURN

Listing 3.10b

200F REM ¥XXXXXXXXXXKHKXXXXXXXXXX

2091 REM % *
2092 REM ¥ FUEL AND AMMUNITION ¥
29093 REM ¥ *

2094 REM XXXXXXXXXXXXXXXXKXXXXXX
2999 RETURN

Listing 3.10¢

21T FEM XREEXXKXERXAXX
Z03:2 REM ¥DECREASE AMMOX
2FLT FEM ¥EXAXXXXXXXXXKXX
222 IF K=1 THEN &MMO=AMMO-1

Listing 3.10d

FEM ERFFFRAXXKKEXXK
REM ¥INCREASE AMMOX¥
ENM #¥FEXXXXXXXXXKXX
F HIT=1 THEN AMMO=AMMO+ 1

[RESNP D]

[n}
“
0
-

Listing 3.10e

REM XXXXXXXHXXXXXXKXX
REM ¥ DOUBLE AMMD ¥
2629 REM ¥XXXXXXXXXXXXXX
2¢T9 IF HIT=1 THEN AMMO=AMMOXZ

93

94
Listing 3.10f

2037 REM ¥XXHHXXHHXXHHXXXX
2038 REM ¥ DECREASE FUEL %
2032 REM X¥XXKKXXKKKKKKKXX
2049 IF K=1 THEN FUEL=FUEL-1

Listing 3.10g

2247 REM #%¥XXXKXXXKXKKXX
2042 REM ¥INCREASE FUEL¥*
2947 REM ¥EXHHHHHHHHHHHX
29059 IF HIT=1 THEN FUEL=FUEL+1

Listing 3.10h

2047 REM ¥¥XXXXXXXXXXXK
2048 REM ¥ RESET FUEL *
2049 REM ¥¥¥¥XXXXXXXXXX
2050 IF HIT =1 THEN FUEL=19

The routines for decreasing FUEL.or AMMO check whether the
fire key was pressed and take off one unit per shot. The routines
for increasing FUEL or AMMO check whether you scored a HIT
and if you did they can add one unit, double the number of units
left, or reset the quantities to full.

Section 11: STATUS & DISPLAY

Afterall the excitement so far with explosions, lasers blasting
away and vour SCORE rapidly rising we need to make sure the
relevant information is displayed on the screen. Of course if you
have been peacefully dodging a plague of flies in the desert you
won’t need to display anything but you must still put a routine
into this slot. For a dodging game use listing 3.1 la. For a FIREing
game start with listing 3.11b, which will display the SCORE. If

95

your game includes a varying supply of FUEL or AMMO then add
either listing 3.11lc or 3.11d.

Listing 3.11a

219¢ REM XXXEXXXXXXRXARXXX
2142 REM *STATUS DISFLAY %

2193 REM % NOT USED *
21287 REM XXXXXXXXXXAXXXXXKX
2179 RETURN

Listing 3.11b

21099 REM ¥XXXXXXXXXHXXXXXK
2192 REM *¥STATUS DISFLAY *

2193 REM * *
2137 REM X¥XXXXXXXXXXXXXXXK
2119

2117 REM XXXXXXXXXKXXXXXX

21183 REM *DISFLAY SCORE¥

21172 REM X¥XXXXXXXXXXXXX

2120 FP$=STR$(SCORE)+" ":X5=144:Y
S£=176:G0O5UB 99909

1?¢ RETURN

Listing 3.11c¢

REM XEXXXXXXXXXXXX

REM ¥DISFLAY AMMCX

REM X¥X¥XXXXXXXXXXXX
FE=CTRE(AMMD) +" "I XE=40:YS=
:GOSUE 7920

Listing 3.11d

2137 REM XXXXXXXXXXNXXX

'8 REM ¥DISFLAY FUELX

2132 REM XXXXXXXXXXXXXX

2140 P$=STR$E(FUEL)+" ":X5=224:YS
=176:G05UB 7700

96

These routines are quite straightforward. They convert the values
in question into strings and pass them, along with their required
screen positions, to the PUT STRING routine. The screen positions
are carefully arranged to ensure that messages do not overlap
even if they are all being used.

Section 12: CHECK FOR END OF GAME

In this section we provide all the checks that see whether we have
reached an end of game situation. If any of these checks are found
to be true then we must set the flag FIN to 1. This will signal to
the control program that it is time to stop playing the game and
move on to the end of game display routine. If FIN is zero the
control program will go back to the MOVE FIRE subroutine. From
this section we need to type in the main routine (listing 3.12a)
and at least one of the remaining five routines. After all, we want
to stop the game sometime!

The first of the checks (listing 3.12b) is on whether the number
of ALIENS is down to 0: This could be used in a dodging game,
for instance, where you win if you managed to dodge ten aliens.
For a dodging game you will also need to test for a collision with
listing 3.12¢.

You might decide that you lose if more than 3 aliens get PAST
and over-run your base. This could be tested for by adding listing
3.12d.

The final two listings deal with testingforrunning out of
AMMO or FUEL if you wish these to indicate the end of the game.

Listing 3.12a

2200 REM XXXXXXXXXXXAXXXXXXXXXNKX
2292 REM ¥CHECH FOR END OF GAME¥
220S REM X¥XAXAAXXAXXXXXXXXXXXHNX
2279 FETURN

97

Listing 3.12b

2229 IF ALIENS=g THEN FIN=1

2232 IF HIT=! THEN FIN =1
Listing 3.12d

2249 IF P=3 THEN FIN=1
Listing 3.12¢

2259 IF FUEL=@ THEN FIN=1
Listing 3. 12f

2219 IF AMMO=3 THEN FIN=1

These routines all test variables or flags set elsewhere in the
program and when one of the conditions is satisfied, they set the
FIN flag to 1.

Section 13: END OF GAME DISPLAY

Ifthe FIN flag hasbeenset for some reason then we want to stop
the game. We could just stop the game. This is the simplest and
most obvious method. You will then have to type RUN to play
again. Listing 3.13a is just such a QUICK STOP routine. However
it might be nice to end up with a polite question as to whether or
not you wish to try again. Well, since 1t costs nothing to be polite,
listing 3.13b is a POLITE STOP. If yours is a SCOREing game, then
you might also like to add listing 3.13c to tell you what SCORE has
been achieved.

98
Listing 3.13a

REM ¥¥¥¥HHKHHHHXX
REM ¥ STOF GAME %
REM ¥QUICK STOF *
REM %%%%%XXKHXXXX
STOF

RETURN

Listing 3.13b

Q

REM ¥%%%%HHHXXXX¥

2399

2392 REM ¥ STOF GAME *

2393 REM ¥FOLITE STOF*

2395 REM ¥¥¥HKKXXXHHKKX

2319 CL=

2339 FRINTRZ3S5, "ANOTHER GO?":A$=
INKEYS$

2348 AS=INKEY$:IF A$="" THEN 234
9

23S% IF AS<>"N" THEN 2399

2360 STOF

2399 RETURN

Listing 3.13¢

2329 FRINTE136, "YOUR SCORE WAS"j;
SCORE

The first routine in this section is fairly obvious. The second,
more polite, routine clears the TEXT SCREEN and PRINTs the
question ANOTHER GO? (Note that the TEXT SCREEN comes up as
soon as you PRINT anythingon it — vou do not have to ask for it
specifically.) The computer now waits for you to press a key, and
if you press anything except “N’* it RETURNS to the control
program, which will start again, otherwisce it STOPs. If you add in
listing 3.13c then your score will be PRINTed on the screen above
the question.

CHAPTER 4

Starting to Write Your Own Games

Hopefully, you’ve had a lot of fun making your own games from
the routines in Chapter 3. But there is no reason why you
shouldn’t make up your own routines to extend the variety
available for asection. Perhaps you are wishing there was a
different background available, or a different explosion. Well, in
this chapter we will take a good look at how we could change or
completely replace the routines given in Chapter 3. Let’s go
through the routines as listed and see how they really work.

INSTRUCTIONS

These are fairly easy to alter. In BASIC alinecan either be a
command on its own or several commands separated by colons.
These commands, plus whatever follows them up to the next
colon (or the end of the line), are known as statements. There are
alot of PRINT statements in this section so let’s take a look at
some of these first. Basically, anything inside the quote marks
gets printed on the screen, so for the example game you could
changeline 1060 from:

1060 PRINT («258,“USE 0 TO FIRE”: F=1
to:
1060 PRINT (258, “USE 0 TO FIRE YOUR LASER”:F=1

As you can see the only differences are inside the quotes and this
would simply PRINT the new message on the screen instead of the
originalmessage. Altering the position of the message on the
screen is also fairly simple. The screen on your Dragon is divided
up into 16 rows of 32 columns, making 512 PRINT positions.
These are numbered 0 to 511, with the first row going from 0 to
31, the second from 32 to 63, and so on. The (@ sign means “at”,
and we can PRINT “at” any of these 512 positions by typing PRINT

99

100

(« (position). Let’s display a ‘GOOD L.UCK!’ message on the
screen. We need to pick a line number that will go in between the
ones that are already used. 1075 seems like a good choice. We
want to PRINT the message lower than the last instruction so we’ll
put it two rows below it and centred, so it will be at position 365.
(If you want to think in terms of rows and columns then if you
number them from 0 to 15 and from 0 to 31 you can work out the
position as 32*row number + column number. So, our new line
of BASIC is:

1075 PRINT (¢ 365,“GOOD LUCK!”

Andit’s as simple as that.

BACKGROUNDS

Most of the backgrounds in this book involve the RaNDom
distribution of shapes on a plain background. We will see how
the shapes are made up in Chapter 6 so let’s not worry about that
now. Line 1360 (in listings 3.2b to 3.5e) controls the number of
objects, in this case 25, that we have on the screen. If you wanted
to make the game a bit harder (fer a dodging game), or just
wanted more shapes on the screen (fer a firing game), then you
could change the 25 to a larger number. This would put extra
waves or stars (or whatever other shape is used) on the screen.

Line 1370 PUTSs the shapes on to the screen at an x position
which is a RaNDom multiple of 8 in the range 0 to 248
(X2=RND(32)*s-%) and a y position which is a RaNDom multiple of
8 in the range 0 to 168 (Y2=RND(22:*8-8).

The routines that draw skylines are slightly different from the
others. In the first case you cannot have a different number of
buildings across the bottom of the screen as there is only space for
32 characters, each 8 points in width. Also we do not want the
buildings PUT at RaNDom positions. In listing 3.5g what we do is
to use RND() to determine height of the buildings at random. So
inline 1360 1 goes from @ to 248 STEP 8 for the X position, whilein
line 1365 J goes from 8 TO 8*RND(2) STEP 8 for the Y position.
Hang on, this means our buildings will be dangling down from

101

the top of the screen! We need to use 168-] as the Y position to
ensure that the storeys of the buildings are built up fromthe
bottom.

In listing 3.5h we use two objects as buildings and then PUT
them in pairs across the bottomof the screen. In thiscase we have
[going from @ TO 248 STEP 16 (instead of STEP 8). We could have
PUT four buildings at a time and then we would have needed to go
up in steps of 32.

If you are not playing adodging game you can fill the screen
with anything you like — surreal space invaders?

PLAYER AND ALIEN GRAPHICS

These will be dealt with separately in Chapter 6.

SET UPAND RE-START

Although this is a small routine, and there is only one routine in
this section, there are quite a few major changes you can make.

You could change the number of aliens you have to fight —
either reducing the number to make the game easier to beat, or
increasing the number to make the game more difficult. At
present itis set to ten butif you wanted to have fifteen aliens then
you could change line 1420 to:

1420 ALIENS=15

You could also change your starting level o f ammunition to make
the game harder or easier in much the same way as altering the
number of aliens. This is done in line 1440. Suppose you wished
to make the game a lot easier by having 100 bullets/bombs to start
with then you could change the line to:

1440 AMMO=100

The amount of fuel can also be changed. Increasing the number
will make the game easier (your fuel will last longer) and

102

decreasing the number will make the game harder (you will run
out of fuel sooner). Line 1450 sets the amount of FUEL you have
to start with.

Remember that you might also want to change the routines in
the section where fuel and ammunition are altered.

MOVE AND FIRE

There s very little in this section that can be changed without
knowing exactly what you’re doing. However it is worth looking at
how we move the characters around. Before a character is PUT
anywhere the background is always GOT first, so that when we
erase the player by PUTting the background back we

automatically ensure that the background is restored. This way

we avoid wiping out any stars, etc., when we pass in front of

them.

DETECT A HIT

These routines use simple animation techniques to move a missile
up the screen from the player. When you are more experienced at
writing programs you could rewrite these to, say, move the
missile in any of four directions from the player instead of just
restricting firing to up the screen. For the moment we won’t
bother to look at these routines in detail.

EXPLOSIONS

You can really have a lot of funin this section, creating different
noises to go with your game. Once you have grasped the methods
of producing music you could even add a signature tune to your
game! Sound on the Dragon can be achieved with one of two
commands - PLAY or SOUND. SOUND can vary the pitch over
most of the audible range and can vary the duration from about
116 of a second to as long as you wish This is fine for many
applications, but for music and really spectacular effects we need
to PLAY. The PLAY command is always followed by a string

103

containing numbers and letters which represent most of the
musical parameters such as tempo, note length, volume, rests
and, of course, pitch. This is not the place for a music lesson, but
suffice it to say that you can use this command to make an
enormous variety of sounds.

The routine that flashes the screen does so by quickly
alternating between the two available colour sets with the SCREEN
command.

SCORING

There are one or two alterations that can be made to this routine,
mainly concerned with the way scoring is carried out. The
amount your score is incremented can be changed quite easily,
and this has already been done in the routines listed. If you
wanted to increase your score by 20 points for every alien shot
down then you could change line 1920 to:

1920 SCORE=SCORE+20

A more complex routine would give a higher score the earlier you
managed to hit the alien, so you would need a routine that
converts a low y coordinate to a high score. When the alien
reaches you AY will be 168, so if you subtract AY from 168 you
will score more for hitting the alien early on. You can divide the
result by, say, 8 to prevent ridiculously high scores, and take its
INT value to avoid decimal scores. The new line would look like
this:

1920 SCORE=SCORE+INT((168-AY)/8)

You can experiment with different ratios as much as you like, of
course.

FUEL AND AMMUNITION

The routines in this section can be altered to increase or decrease
the amounts by which fuel and bullets are used up. The value for

104

ammunition is stored in the variable AMMO and the amount of
fuel is stored in the variable FUEL. Another variable used in these
routines is HIT, which, as we have seen already, is used to
indicate whether or not you managed to hit an alien (it is set to 0
if you didn’t, and 1 if you did). This variable is used in dodging
games to indicate that you have crashed. A variable used in this
way, as an indicator, is called a flag.

REDISPLAY THE SCREEN

There arenot many changes youcan make in this section,
however you could make a couple of alterations if you wanted to
make the game faster and a little harder. If you leave out lines
2130 and 2140 then vou won’t know what levels of fuel and
ammunition you have left. That will make the game much harder
to play, because you won’t know if you’re just about to run out of
fuel or bullets. Because the Dragon now has two less jobs to do,
the program runs faster. It’s like someone taking away some of
your typing — you work much faster.

A more complicated change would be to put in a high score
variable, so that you could see whether you were improving or
not. This is more complex because you have to put extra lines in
other routines as well before you can print it on the screen.

First you must decide what te call the variable in which you
keep the high score. If you look at Appendix One at the back of
this book, you will see a list of the variables and their uses.
Choose one that is not in the list. It is best to choose something
meaningful such as HISCORE.

Don’t forget to keep track of which extra line numbers you use
or you could find yourself overwriting something you wanted to
keep. It’s best to look at the listing on the computer before
adding any new lines.

In the END OF GAME routine we have to write a line which
compares the high score with the score you have just received. If
the latter is the greater it mustalter the high score to be equal to
your score. This means we will have to use an IF statement and
we can write the statement out (in English) as IF (MY SCORE) IS

105

GREATER THAN (HIGH SCORE) THEN LET (HIGH SCORE) EQUAL
(MY SCORE). This is very easy to convert to the BASIC language
and is equivalent to:

IF SCORE>HISCORE THEN HISCORE=SCORE

Which goes to show how much like a shortened form of English
the BASIC language is.

Having done this we must return to altering the routine to
update the screen display. We need an extra line in here to PRINT
the high score on the screen and we could put one in that looked
like this:

2185 P$=STR$(HISCORE)+* ”:XS=80:YS=176:GOSUB
9900

You can of course put the high score anywhere you like, but try
to ensure it doesn’t interfere too much with the rest of the game.
Look again at the section on changing the instructions if you’re

not sure how to go about it.

CHECK FOR END OF GAME ROUTINES

These routines would be quite awkward to change but perhaps
when you have some more experience you could devise a system
which tells you why the game has ended. You would need to
examine the different variables to see why the game ended. For
example, a variable could hold the numbers 1 to 4 to show that:

1 — Thealiens overran your base
2 - You shot down all the aliens
3 — You ran out of fuel

4 — You ran out of bullets

The variable that flags the ¢nd of the game is FIN so you could
change the value that is assigned to it in each line of the CHECK
routine. In the END OF GAME routine you could PRINT a different
message, dependent on the value of KFIN, that would tell the
player why he had won or lost the game. These messages could be

106

slotted in between lines 2320 and 2330 and would look like this:

23211F FIN=1THEN PRINT @ 197, “YOU WERE
OVERRUN BY ALIENS”

2322 JF FIN=2 THEN PRINT @ 197, “YOU SHOT
DOWN ALL THE ALIENS”

2323 IF FIN=3 THEN PRINT (« 197,“YOU RAN OUT OF
FUEL”

2324 IFFIN=4THENPRINT ¢« 197,“YOURANOUT OF
AMMUNITION”

Of course you could still add these lines even if you were using
the impolite ending.

That concludes this chapter on altering the routines in the
arcade games. Remember to take everything one step at a time,
testing as you go so that you don’t have to look through reams of
alterations to find one mistake. It is also a good idea to keep
CSAVEing the program after making alterations just in case the
power goes off for any reason. Whether it’s because grandma fell
over the plug or because the blackout for World War Three has
come, you're going to be very annoyed if several hours of unsaved
typing suddenly changes into a blank screen.

CHAPTER 5

Further Explanations and Understanding BASIC

Some of the BASIC used in creating the routines has already been
explained in the previous chapter but from now on we will be
using and referring to more advanced techniques for
programming. If you have been working through the book and
want to learn more about the technicalities of BASIC then carry on
with this chapter. In it we will examine the way BASIC actually
works.

MORE PRINT ITEMS

In previous routines you may have noticed that various parts of
the PRINT line are separated by semi-colons(;), these are, logically
enough, called PRINT separators, but they are not there just to
break up the statement, they have a definite purpose. Try the
following short routine:

10 FORX=1TO9
20 PRINT “17;
30NEXT X

and notice the result — it should look like this:

Now try the routine without the semi-colonat the end of the
PRINT statement:

10 FORX=1TO9
20 PRINT “!”
30 NEXT X

107

108

The result is different — it looks like this:

!
|
|
1
1
1
1
1
1

Now try it with a comma:

10 FORX=1TO9
20 PRINT 17,
30 NEXT X

Once more the result is different:

| |
| |
! !
! !
!

From the above, we have noticed several things which can be
summarised as follows:

1. A semi-colon causes the PRINT items to be PRINTed one after
another with no spaces in between.

2. A comma causes the PRINT items to be PRINTed one in each
half of the screen.

3. The absence of either a semi-colon or a comma causes an
automatic line feed which means that each PRINT item is PRINTed
on a separate line.

If you try PRINTing numbers on the Dragon the rule for semi-
colons may at first appear to go awry. Try the following:

I0FORX=1TO9

20 PRINT X;
30 NEXTX

109

and you will get:
123456 7 89

Why the spaces? This is because whenever the Dragon PRINTS
numbers it always puts a space in front of them. This can be quite
useful sometimes for tabulating results, but at other times it can
be quite a nuisance! Either way, you should keep it in mind
whenever you plan to PRINT numbers.

We have already used PRINT « and seen how you can use this
to PRINT anywhere on the screen, but there is another form —
PRINT TAB() — which PRINTS at a specific column on the screen,
rather like the TAB on a typewriter. You cannot use it to
backspace on a line, however. If you typed:

10 PRINT TAB(20);“MY NAME IS”;TAB(18);“FRED”
You would get

My name is
Fred

The computer did the best it could in the circumstances! I fyou
use a TAB number bigger than 31 (31 would give you the 32nd
column on the screen because the first column is numbered 0) the
computer will move to the next line and PRINT at the column
which is 32 less than the TAB number you gave it, so that:

10 PRINT TAB(2); “WHAT’S UP”; TAB(34);“DOC”
would produce the following:

WHAT’S UP
DOC?

PRINTING VARIABLES

So far, we have only seen how to PRINT items enclosed in quotes
(“”) but we can also PRINT variables. We’ve already met numeric
variables, used to store numbers such as the score and the screen

110

positions. They can be PRINTed in just the same way as things in
quotes:

10 PRINT @ 0,SCORE

and if, for instance, the number 2200 is stored in SCORE, 2200
will be PRINTed in the top left-hand corner of the screen
(preceded by that space we mentioned earlier). This is how we
displayed the player’s score at the end of the game:

2329 FRINT@136, "YOUR SCORE WAS";
SCORE

Notice that because the computer PRINTS a space in front of
numbers we didn’t need to put one after “WAS” inside the
quotes.

There is another type of variable called a string variable and
these contain characters instead of numbers. We will talk about
these more in Chapter 7.

PRINTING ON THE GRAPHICS SCREEN

In the background routines are lines which place headings, such
as “SCORE:”, on the screen. They do not use PRINT because this
command only works with the TEXT screen, which is completely
separate from the GRAPHICS screen. Instead they give a string
variable the characters for the heading and pass this (P$), along
with the screen co-ordinates where we want the headings to go, to
the PUT STRING subroutine at line 9900. This routine takeseach
character in turn from P$,GETs it from the collection of characters
defined in the initialisation section of the program, and PUTs it on
screen. We will see more on GET and PUT in Chapter 6.

PROGRAM CONTROL
Programs are controlled by asking questions and then directing

flow to different parts of the program depending on the answer.
You ask a question in BASIC by saying IF (CONDITION)THEN

111

(ACTION). CONDITION can be many things and you can use the
following symbols (or operands) to make the test.

= Equals

> Greater than

< Lessthan

<= Less than or equal to

> = Greater than or equal to

<> Not equal to

Here are a few examples of their use:

201F A>B THEN GOTO 40
30 PRINT A
40 PRINT B

If A holds a bigger number than B, the program will jump to line
40 and only the value of B will be PRINTed, but if A holds a
number equal to, or less than B then the values of both A and B
will be PRINTed, because the program will carry on with line 30,
instead of jumping to line 40.

20 IF A$<>B$ THEN STOP
30 PRINT A$
40 PRINT B$

In this case, we are testing to see if two string variables contain
the same letters. If they don’t, the program will stop, and if they
are identical, the program will PRINT out the contents of A$ and
BS.

20 IF A-B=5 THEN GOSUB 1000
30 GOSUB 2000

Line 20 checks to see if the result of subtracting the value of B
from the value of A is equal to S, and if it is the program will
jump to the subroutine at line 1000, and will proceed to the
subroutine at line 2000 if it isn’t. The contents of A and B are not
af fected by this. ACTION can also be many things and we have
already used three different actions in the previous examples.
Here are some more:

20 IF Y<>0THEN LET Y=0

112

This will reset YtoQifitissome other number.

30 IF M$="Y” THEN SOUND 75,1
This will produce a sound if the string variable M$ contains the
letter Y.

40 IF (X+Y)2<Z THEN CLS
Line 40 willclear thescreen (C1.$) if the result of adding the
values in X and Y together and then dividing by two is less than
the value of 7. Calculations in brackets are always performed
first; without the brackets multiplication and division will be
done first and the value of Y would first be divided by 2, and then
added to the value of X. This can be seen from the following
example:

(3+7)/12 = 10/12=5
whereas:

34+4712=3+35=65

Two or more conditions can be tested at one time, using AND, OR
and NOT.

AND

Thisis very similar to its meaning in English and, when it is
used, the specified action will only happen when all the
conditions are true. For example:

20 IF X=Y AND Ms$="YES" THEN STOP
oreven:

30 IF H=67 AND X$<>“NO"” AND A-B=7Z+W AND
GS=KS$ THEN CLS: GOTO 20

In the above line, the screen will orly be cleared, and the
program then jump to line 20, when all four conditions are met.

OR

This is reallv the opposite of AND. in that the action will be

713

performed if either condition is true, butnotiftheyare both
false. For example:

20IF X=0 OR B=1THEN SOUND 75,1

The note will sound if X holds the value of 0, or B holds the value
1, or if both are true.

NOT

NOT can sometimes be very useful. Just as in English, it is used to
switch true (which the Dragon takes as —1), and false (0) values.
We can say, for example:

1510 IF NOT (A=B) THEN GOTO 90

The condition A=B is true if A does equal B, false otherwise.
Putting NOT before the condition reverses the values the Dragon
uses as true and false, so that A is NOT equal to B then the
program will go to line 90, since NOT (A=B) is true.

Right, that’s enough BASIC for now. In the next chapter we will
deal with all the fun and frolics of how to define characters like
the aliens and the player.

CHAPTER 6

Character Graphics

In this chapter we will be taking a look at one of the most
important parts of programming games: Graphics characters. We
have already used many of these without bothering to worry
about how they are made up or how they work. Let’s take a look
at one of the routines that sets up a graphics character. For
example, look at the routines that define aliens. As you can see,
they are all very similar, in fact the only differences are in the
lines starting with REM and the line starting with DATA. The line
starting with REM, if you remember, just means REMark or
REMinder, so after REM you can write anything you like — the
program will ignore this statement — it’s just there to help us
humans understand the program.

Next we’ll deal with the DATA lines. You may have noticed
that there are always eight numbers in each DATA statement This
is because of the way in which our little characters are made up.
They are drawn on an eight by eight grid of squares. We have to
draw our character on a grid like this, and remember, you can
only use whole squares, not parts — it’s all or nothing.

v o ©
OO - ©® TN~

128

24
60
90
36
24
36
66
123

Above is a blank grid and next to it we’ve drawn a new alien, so
that you can see how to turn him into a set of numbers. If you
look again, you can see the row of numbers across the top of the
grid. Each square in the grid has a value, and that is given by the

114

115

number above it,soto get the number for each line, you start at
one end, and if the square is blank you move to the next, and if
the square is blacked in you add it to your total. The first line is
hence:

16 + 8 = 24
and the rest of the lines are as follows:

32+16+8+4=060
64 +.16 + 8 +2 =90

32+4=136
16 + 8 =24
32 +4=236
64 + 2 = 66
128 +1 =129

Now youknow enough to be able to design your own graphics
characters so that you can have different aliens or players. You
can even design new shapes for use in the background. What we
really need to know, though, is how the routine actually works.
So let’s go back over it in greater detail.

1. The REM statement we have already dealt with, and we
know that REM is short for REMinder or REMark.

2. There is anumber system called binary, based on zeroes and
ones instead of our decimal system which is based on the digits 0
t0 9. This binary system is the only number system that your
microcomputer directly understands. It seems to understand
decimal numbers but that is only because there is a program
inside that convertseverything — even the words — into binary
numbers.

We can use this system to represent our graphics character, by
putting a one where a square is blacked in and a zero where a
square is left blank. In this way we would get 8 binary digits. If
you look in Appendix Four you will see that a series of eight of
these binary digits are equivalent to a decimal number between 0
and 255, and the numbers of the DATA statements are the decimal
equivalents of these binary numbers. In computing we call a
binary digit a BIT for short. Eight bits make what is called one
BYTE, and your computer’s memory is divided up into bytes.

116

Your Dragon has 65536 bytes of memory, 32768 of which are
available for you to put information into. Within a byte, as you
move along from right to left each bit is worth double that of the
one before it — hence the sequence of numbers at the the top of
our graphics grid:

128,64,32,16,8,4,2,1

If each bit was set to 1, the number held in that byte would be
255 decimal, or 11111111 in binary.

3. The next statement sets two variables, PG and N, and then
GOSUBs to the routine at line 9000 which does the actual defining
of the character.

4. This routine is very short, but it manages to do a lot of
work. The first line just arranges for us to see graphics pages PG,
PG+ 1, PG+2, and PG+3. You will notice that in our character
definitions we always set PG=2 so you will see pages 2,3,4 and S.
This line is not really necessary, but we might like to see what’s
going on. The next line sets the first address in memory which we
are going to write to. We want to define our characters on to page
5 of the graphics screen memory so that we can GET them
afterwards. This page starts at memory location 7680, and this is
what ST (the STart variable) is set to. The next statement is a FOR
NEXT statement. We have used these quite a lot but they have not
yet been fully explained. The FOR statement always goes with a
NEXT statement and it is a way of counting and performing an
action a specified number of times, so, for example:

1220 FORI1=0TO 7

1230 NEXT I

will carry out the instructions in between eight times — the count
starts from zero and goes up to seven in steps of one. It can be
made to go up or down inother steps, so that:

117

10 FORK =10TO20STEP 2

SONEXTK

will mean that K will hold the following values as the program
goes round the loop:

10, 12, 14, 16, 18,20
and the FOR .. . NEXT loop:

10 FORT = 100 TO 10 STEP - 10

50 NEXT T

will give the following as values of T:
100, 90, 80, 70, 60, 5040, 30, 20, 10

You will notice that on the line after the FOR statement in line
9010, there is another FOR statement. This is perfectly
respectable, and it is called “nesting loops” (sounds cosy doesn’t
it). Itis OK as long as you remember that the loops must not
overlap, so the last loop “opened” with a FOR must be the first
loop “closed” with a NEXT. These two loops are both closed in
line 9050, but with just one NEXT statement This is a feature
special to the Dragon. It allows us to say NEXT Y.CH instead of
NEXT Y:NEXT CH, although we could still do it this way if we
wanted.

S. Now for what is going on inside the loops. Well, first we
READ the number in the DATA statement into the variable CD (for
CoDe), then we check to see if the iNVerse flag (NV) is set (NV is
setorreset in the initialisation section of the program) and if it is
we set CD to 255-CD. This has the effect of changing all the zeros
to ones and vice versa — think about it. The next line POKEs this
value (CD) directly into memory, at the address worked out by the
expression ST+224*RN+CH+32*Y. Don’t worry if you can’t see
why this expression works. It’s not obvious and you don’t need to
understand it to use it. In fact, the terms 224*RN and CH are not

118

necessary for the character defining routines, they are only
necessary when you are defining more than one character at a
time, such as in the initialisation part of the program which
defines the entire alphabet, and the numbers 1 to 9, into page 6,
so that we can put scores, etc., on to the graphics screens during
the game. (That’s what all those DATA statements are for in lines
500 to 584!).

6. Whenthe subroutine at 9000 has RETURNed control to the
“ALIEN SKULL”, or whatever, routine, we need to GET the
character into an array. We will be discussing arrays in their more
usual context in the next chapter. For now just think of it as
putting aside an area of memory in which we can store our
graphics character, ready to dump him on screen at a moment’s
notice. A word of warning here: you can only dimension an array
once withina program — attempting to do it a second time will
cause an errorreportand stop your program. For thisreasonit is
of ten a good idea to include all DIM statements in the initialisation
part of the program. As we only visit the character definition
routines once, however, we can put them here and it does make it
clearer what they are being used for.

The GET instruction takes the form: GET(X,Y) - (X+P,Y+Q).A.G
where X and Y are the screen co-ordinates of the top left corner of
the rectangle of the screen which we want to GET. P isthe width
of the rectangleminus 1, Q is the height of the rectangle minus 1,
and A is the name of the array into which we are GETting the bit
of screen in question. GET's partner in crime is PUT and it looks
very similar: PUT(X.Y) - (X+P.Y +Q),A.PSET. This PUTs the area of
screen previously GOT into A. back on to the screen at position
X.Y. The PSET means ‘“put it back just as you got it”. If we
wished we could use PRESET, AND, OR, or NOT instead of PSET.

PRESET: This PUTs an inverted picture on to the screen. By
inverted we do not mean upside down, but that the foreground
becomes background and vice versa.

NOT: This ignores the array completely and just inverts whatever
is on that part of the screen at the time.

AND: This compares each point in the array with each point
already on the bit of screen in question and sets the point on

119

screen if they are both set, otherwise it resets it.
OR: This is like AND except that it will set the screen point if
either of the points are set, otherwise it resetsit.

Well, that’s how the character definition routines work. Of
course you could do all this without using using READ, DATA, FOR
and NEXT, but the program would be badly styled, look very
cumbersome and be difficult to change.

Where else can we use graphics characters? Well, if you
remember we said we would be creating some more firing
routines in this chapter, and it is in these routines that we can
make further use of graphics characters. We will define a bomb
and a fireball which we can GET/PUT up the screen, and then we
will see how to utilise these in a firing routine. First, a picture of
a bomb:

24
60
60
60
60
24
60
126

The numbers for it would be:

16 + 8 =24
32+16+8+4=60
32+16+8+4 =60
32+16+8+4 =60
32+16+8+4=60

16 + 8 =24
32+16+8+4=60
64+32+16+8+4+2=126

120

Now then, we need to decide where to put the lines which will
define the character. We do not want to put them in the firing
routine because that would mean redefining the character each
time we fired a shot. This is very inefficient, and it would slow
down the program intolerably. A good place would be in the alien
graphics routine, and it would look like this:

1183 DATA 24,60,60,60,60,24,60,126
1185 GOSUB 9000
1187 DIMC(1):GET(0,144) - (7,151),C,G

Notice that this time we don’t need to set PG or N because they
will still be set from the alien definition. This would mean that
array C now contained a bomnb! Here is the listing which can be
slotted into the firing routine part of the game if you wish:

Listing 6.1

1700 REM ¥XRXRXRERERXRXR

1701 REM ¥CHECK FOR HIT¥

1702 REM % BOMB *

1705 REM ¥XRXXEXEXERXRXKR

1719 HIT=0:IF K=8 THEN 1799

1715 SOUND19g, 1

1720 BX=FPX{BY=169

1725 GET(BX,BY)-(BX+7,BY+7),N,G:
PUT (BX,BY) - (BX+7,BY+7),C,PSET
1730 BY=BY-8

1735 PUT (BX,BY+8) - (BX+7,BY+15),N
,PSET

1748 GET(BX,BY)~(BX+7,BY+7),N,G:
PUT (BX,BY)- (BX+7,BY+7),C,PSET
1745 IF XA=PX AND AY=BY THEN HIT
=1:GOTO 1749

1750 IF BY>@ THEN 1739

1768 PUT(BX,BY)- (BX+7,BY+7),N,PS
ET

1799 RETURN

121

If you want a fireball instead of a bomb just change the DATA to
this:

1183 DATA 0,0,36,24,126,24,36,0

By following the above format, you should be able to create many
different types of missile.

Following this text is a utility program (a utility program is one
that helps you to design and create other programs) to help you
make up your own characters and work out the DATA for them
without using reams of paper and wearing out lots of pencils.
(After all, what’s a computer for, if not to make life easier?) Your
position in the grid is shown by a cross, which you can move with
the arrow keys. When you reach a square you want to change -
either from black to white or white to black — press C and it will
change. As you create your character you will see a real-size
version appear at the bottom of the screen, and under the word
DATA you will see the numbers that you will need to put into the
DATA statement in your definition routine.

This is a longish program, so be careful how you type it in. It
would be a good idea to CSAVE it for future use.

Character Editor Listing

19 PCLEARS:FMODE4,2:FCLS1

29 PG=2:N=44:NV=1:GOSUB 9999

39 DIMC(1):DIMO(1):DIMN(1):DIMDT
(7)

49 GET(88,152)-(95,159),C,G

S9 GOSUB 1999

69 GOSUB 20090

199 A$=INKEY$:IF A$="" THEN 199
119 IF A$="C" THEN GOSUB 3999: GO
TO 190

120 IF A$=CHR$(8) THEN IF CX>%é6

THEN F=F¥2:CX=CX-3:G0SUB 2999:G0

TO 190

139 IF A$=CHR$(?) THEN IF CX<1S2
THEN F=F/2:CX=CX+8:G0OSUB 20909:G
0TO 199

122

149 IF A$=CHR$(10) THEN IF Y<Z7 T
HEN AD=AD+32:Y=Y+1:CY=CY+8:GOSUB
2009:6G0T0 199

159 IF A$=CHR$(24) THEN IF Y>0 T
HEN AD=AD-32:Y=Y-1:CY=CY-8:GOSUB
2009

160
So92
S92
g

S94
S96
S98
g

S19
S12
S14
S1é
S18
520
S22
S24
S26
S28
S39
532
534
S36
538
5S40
542
S44
S46
S48
S50
552
Sée2
Sé4

GOTO
DATA
DATA

DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

100
O, 60,66,66,126,66,66,8
0,124,66,124,66,66,124,

0,60,66,684,64,66,60,0
0,1206,68,66,66,68, 120,98
0,126,644, 124,64,644, 126,

9,126,64,124,64,64,64,0
B, 60,66,64,78,66,60,0
O, 66,66, 126,66,66,66,0
0,62,8,8,8,8,62,0
0,2,2,2,66,66,60,98
9,68,72,112,72,68,66,9
0,64,64,64,64,64,126,0
O, 66,102,908 ,66,66,66,90
0,66,98,82,74,78, 66,0
O, 60 ,66,66,66,66,60,0
9, 124,66,66,124,64,64,0
B,60,66,66,114,74,60,0
@, 124,66 ,66, 124,68,66,0
0,60,64,60,2,66,60,0
0,254, 16, 16,16,16,16,9
0,66 ,66,66,66,66,60,0
O, 66,66,66,66,36,24,0
0,66,66,66,90,102,66,0
0,66,36,24,24,36,66,0
9,130,68,40,16,16,16,9
9,126,4,8,16,32,126,0
0,0,0,0,0,0,0,0
999,999,999, 999,999
0,24,36,44,52,36,24,0

Séé6
Se8
S79
S72
S74
S7é
S76
589
S8z
S84
S86
299
1999
1919
EP 8
1929
1939
1949
1959

DATA ¢,8,24,8,8,8,28,9
DATA ©,24,36,8,16,32,60,0
DATA 9,24,36,24,4,36,24,0
DATA 9,8,24,40,72,124,8,0
DATA 0,60,32,56,4,36,24,0
DATA 9,28,32,56,36,36,24,08
DATA 9,60,4,8,16,32,32,08
DATA 9,24,36,24,36,36,24,9
DATA 9,24,36,36,28,4,56,08
DATA 9,0,8,9,0,0,8,0

DATA 8,24,24,126,126,24,24,0
REM %¥DISPLAY GRID¥¥
PMODE4, 1 : PCLSNV: SCREEN1, @
COLORZ, 1:FOR X=96 TO 160 ST

LINE(X,64)-(X,127) ,PSET
NEXT X

FOR Y=64 TO 128 STEP 8
LINE(96,Y)-(159,Y), PSET

1969 NEXT Y

1979

999
1999
1199
T ¥S
1119
?6:G
112¢
61680
1120
1149
1999
2099
ET

P$="DATA":XS=56:Y5=48: GOSUB
g

FOR YS=64 TO 129 STEP 8
XS=72:P$="0":GOSUB 9999 :NEX

FP$="C TO CHANGE":XS=168:YS=
0SUB 9999
CX=96:CY=64:0X=CX:0Y=CY:AD=
IF=128:Y=0

GET (0X,0Y) - (0X+7,0Y+7),0,6
RETURN

REM ¥XCROSS¥¥
PUT(0X,0Y)-(0X+7,0Y+7}, 0, PS

2019 GET(CX,CY)-(CX+7,CY+7),0,6

2029
ET

PUT(CX,CY)-(CX+7,CY+7),C,PS

123

124

2939 0X=CX:0Y=CY

2049 RETURN

2999 REM %¥¥CHANGE¥X%

3999 PUT(CX,CY)-(CX+7,CY+7),0,PS
ET

3919 PUT(CX,CY)~-(CX+7,CY+7),C,NO
T

3929 GET(CX,CY)-(CX+7,CY+7),0,6G
3939 IF PPOINT(CX+3,CY+3)=8 THEN
DT(Y)=DT(Y)+F ELSE DT(Y)=DT(Y)-

F

3935 A=DT(Y):IF NVU=1 THEN A=255-

A

39049 POKE AD,A

3959 P$=STR$(DT(Y)):P$=RIGHT$(P$
s LEN(P$)-1)

3969 XS=80-8*¥LEN(P$)

3979 YS=64+8%Y

3975 COLOR1,1:LINE(S6,YS)-(80,YS
+7),PSET, BF

3989 GOSUB 9999

3999 PUT(CX,CY)-(CX+7,CY¥+?),C,FS

ET

3995 RETURN

9999 FMODE4,FG:SCREEN1,9:REMthis
is just so you can see it happe

ning

9919 ST=7680+1536% (FG-2)

9929 FOR CH=@ TO N-1:RN=INT(CH/3

2)

9939 FOR Y= TO 7:READ CD:IF CD=

999 THEN Y=7:GOTO 9959

9935 IF NV=1 THEN CD=255-CD

9949 FPOKE ST+224%¥RN+CH+32%Y,CD

?959 NEXTY,CH

9955 RETURN

9899 REM ¥PRINT STRING¥

9999 IF F$="" THEN RETURN

219 AS=LEFT$(P$, 1) F$=RIGHTS(F$
JLEN(F$)-1)

99290 IF As=" " THEN YG=144:XG=29

8:G0TO 9959

9939 YG=144:AS=ASC(A%)-65:IF As<
"A" THEN YG=152:A5=ASC (A%)-48
949 XG=8¥AS

959 GOSUB 9969:X5=X5+8:G0TO0 999

o
9960 PMODE4,2:GET(XG,YG) - (XG+7,Y
G+7),N,G

9970 PMODE4, 1:PUT(X5,YS)-(X5+7,Y
5+7),N,PSET:RETURN

Here is a sample screen from the program:

CATH

[AXR o

[STT
19 AR LN

[o.1% S A9 A5 N W, Y5 Y

&
Wl - TO CHANGE
]

125

CHAPTER 7

Arrays and Adventures

By now you should be quite familiar with the idea of a variable.
We have been using variables to store scores, the number of
aliens and many other things.

These variables are called simple variables — they contain one
number only. If you want to store another number you either use
another variable or overwrite what was stored in the first one.

For example, going back to our cheesecake example for a
moment, suppose you wanted to keep track of your profit on
cheesecake over a week. One way would be to have seven
different variables, one for each day. Then your program would
be seven times as long, as it would be doing the same calculation
on seven different variables, and at the end it would print out
your profits for the seven days with a routine like this:

100 PRINT P1
110 PRINT P2
120 PRINT P3
130 PRINT P4
140 PRINT PS5
150 PRINT P6
160 PRINT P7

Well, it would work, but there is a better way — using arrays.

An array is in effect a collection of variables with the same
name. But unlike simple variables, you cannot LET them equal
anything until you have told the computer that you are going to
use them. You do this with the DIM statement, and this is called
DIMensioning the array.

In our example, we need an array with seven “elements”. Now
itis one of the peculiar facts in computing that computers usually
start counting from 0, not from 1 like humans, so it counts the
elements in an array as 0,1,2,3,4,5,6, and so on. So, to get seven
elements we only need to go up to 6. (This may seem odd at first,
but you will soon get used to it, and it is actually very useful in

126

127

some circumstances.) DIM P(6), then, will create an array of seven
elements, and we refer to them as P(@), P(1), and so on. Now, the
really clever bit about arrays is that the number inside the
brackets (called the subscript) can be another variable! This
means that we could store our cheesecake profits for each day in
P(0) to P(6) and to PRINT them out we could use a routine like this:

100 FORN=0TO 6
110 PRINT P(N)
120 NEXT N

and we think you will agree that this is much better than the
previous method.

This array is said to have one DIMension, with seven elements —
a one by seven array. We have used this DIMension for the days of
the week. However, you can have arrays with as many
DIMensions as you like. Let’s say we wanted to find out which
flavours made the most popular cheesecake (so we can maximise
our profits!) We would set up a two DIMensional array. One
DIMension would have seven elements as before and the other
DIMension would have as many elements as we have flavours.
Let’s keep it simple and say that we have strawberry, chocolate,
blackcurrant and plain — four flavours in all. Our array would be
seven by four, so our DIM statement would be DIM P(6.3). The
first day’s profit for strawberry cheesecake would go intoP(0,0),
for chocolate it would be P(,1), for blackcurrant P(0,2) and for
plain P0,3). The second day’s profit would be in P(1,0), P(1,1), P(1,2)
and so on. To PRINT these out at the end of the program, you
would be able to use a routine like this:-

100 FOR DAY=0TO 6

110 FOR FLAVOUR=0TO 3

120 PRINT P(DAY ,FLAVOUR);* 73
130 NEXT FLAVOUR

140 PRINT

150 NEXT DAY

This would give us aneat table — flavours across and days down,
with 28 figures in all. Can you imagine using 28 variables and 28
PRINT statements to do the same job?

128

STRING VARIABLES AND STRING ARRAYS

Variables and arrays which contain numbers are called “numeric”
variables or arrays. This is not just a pointless piece of jargon; it
distinguishes them from another, quite different, type of variable
— a string variable — and another type of array — a string array.

We have used string variables in our arcade game to get scores,
etc., on to the Dragon’s high resolution graphics screen, but we
have not really looked at them very closely

Whereas a numeric variable holds a number, a string variable
holds a string, and the same goes for arrays. This is the major
difference between the two types and it is a very important
difference. A string is a collection of characters. The computer
recognises a collection of characters as a string when they are
between quotes. So, “FRED” is recognised by the computer as a
string, but FRED without the quotes is assumed to be a numeric
variable.

The important thing to remember is that you cannot mix the
two types. If, for example, you tried to say LET A=“FRED" the
computer would give you the error report >TM ERROR which
stands for Type Mismatch, which is just what it was. String
variables can have the same kind of names as numeric variables,
but they always have a $ sign on the end to show that they are
string variables. So, LET A$="FRED” would put the string “FRED"
into the variable A, and PRINT A$ would result in FRED
appearing on the screen. LET A$= 10, however, would give >TM
ERROR again, because you cannot put a number into a string
variable.

Of course, digits are only characters, and they can be put in
strings, so LET A$="10" is fine. But remember it is a string not a
number and so, if you then tried to say LET X=2+A$ you would
once again get >TM ERROR. There are, however, two functions
which allow you to change a number into a string and vice versa.
LET A$=STR$(10) is quite acceptable, and would result in A$
containing the string * 10”. Notice the space. This is why the
computer PRINTs a space before numbers — because it uses the
STRS$ function itself to convert the numbers into strings bef ore

129

printing them. LET X=VAL(A$) is also perfectly OK, and if A$
contained the string “10™ (or * 10”) then X would be assigned the
value 10.

We can use string functions together with the two DIMensions
of P$(6,3) to format the output from our cheesecake profits
routine. We can use the STR$ function to first turn the numbers
into strings, and then use another function which gives us the
length of a string (LEN) to get all the numbers lined up. The
program would look like this:-

100 FOR DAY=0 TO 6

110 FOR FLAVOUR =0TO 3

120 LET A$=STRS$ (P(DAY,FLAVOURY))

130 PRINT TAB(FLAVOUR*8 - LEN(A$)+8);A$
140 NEXT FLAVOUR

150 PRINT

160 NEXT DAY

Arrays and strings are used a lot in adventure games and this is
what we’ll take a look at next. In the adventure game given in the
next chapter we will see multi-DIMensional arrays used to keep
track of things like the player’s position and the contents of
rooms. The program in the next chapter builds up into a game in
much the same way that the sections of Chapter 3 built up into an
arcade game. Although there are some differences the process is
sufficiently similar not to need a full example program.

CHAPTER 8

Adventure Games, a Selection of Lego Bricks

In thischapter we are going to write an adventure game. We will
begin as we did for our arcade game — by considering the basic
building blocks of such a game. These are as follows:

Initialisation.
Assign the Inventories.
Give Instructions.
Create the Maze.
Describe Situation.
Player’s INPUT.
Check INPUT is Legal.
Perform Instruction.
9. Computer Response.
10. Check for End of Game.
11. End of Game Message.
12. Round Again.

- NV NV S

To begin with, we will write the simplest (well almost!) version of
the game. We have chosen a scenario of a maze of dungeons. The
player mustsearch for a Crown of Emeralds left thereaeons ago
by the king of a long forgotton race of Troglodytes. The only
“feature” of the game is that some of the passages from cave to
cave have doors that are locked, and to open them the player
needs to find and take a key, of which there are several lying
about in the maze. To prevent things from becoming too easy we
will not allow any keys to be used more than once — they will
always either break or get stuck in the lock.

Step 1. Initialisation. OK! Let’s build the game. Again we will
begin with the initialisation and control program, which follows
the sequence set out above. The pattern is a familiar one — for
each block, we just GOSUB to a subroutine which does whatever

130

131

the blockname says itmustdo (eg. create a maze), just as in our
arcade game.

The control program is shown in listing 8.1. Type it in exactly
as shown.

Listing 8.1

19 REM ¥¥¥XXXXXHXHXXXXXXK

28 REM ¥TREASURE TRAIL¥

39 REM ¥¥HHHHHHXKHHHHNX

49 REM %% INITIALISE DRAGON ¥
S9 CLEAR S99

69 DIMIA$(7,1):DIMIB$(10):DIMICS
(2)

79 DIMRM$(35,5) :DIMAJ$(4,1):DIMFP
S(S)

89 FOOD=@:BATTERIES=0:MN=0

99 DEF FNR(DR)=(& AND DR=3)-(&6 A
ND DR=2)+(1 AND DR=4)-(1 AND DR=
S):DEF FND(DR)=DR-(DR=2 OR DR=4)
+(DR=3 OR DR=5S)

198 REM ¥¥X¥HXKHHHHHHXXXXKXX

119 REM ¥ASSIGN INVENTORIES¥*

120 REM X¥¥¥XXXKKKHHHHXXXXKKX

139 GOSUB 1288

149 REM X¥¥XXXXXKHXXXXK

159 REM ¥INSTRUCTIONS¥

169 REM ¥XXXXXXXXXXKXK

179 GOSUB 1998

189 REM ¥¥REPEAT UNTIL user quit
s¥k¥

199 REM X¥¥X¥XXXXKKKHNX

209 REM ¥CREATE MAZE¥

219 REM X¥¥XXXXXXXXXXX

229 GOSUB 1499 :NR=1:FPRINT@448,""
i

239 REM ¥¥REFEAT UNTIL game over
**

132

249
259
269
279
289
299
390
319
339
349
359
K1-15)
429
439
449
459
460
479
480
499
S99
S19
g

529
S39
S49
SS9
1-15)
S79
589
S?9
[=Y5154
ME "
619

REM ¥¥%¥X%XXXX%¥%

REM *¥NEW ROOM?¥

REM ¥¥%¥%¥%%HH%%%

ON NR+! GOSUB 2029,2009
REM %%%%%%H3% %% %% %

REM ¥PLAYER INPUT¥

REM %%%%%%% %K% % %% %
GOSUB 2599

REM %¥%%%%K% %K%K KKK X %K%
REM ¥LEGAL MANOUVRE?¥
REM %¥%%%%%X%%% %K XXX XXX
GOSUB 399@:IF Q=1 THEN &S50
REM %¥%%%%%X% %% KK XXX XXX
REM ¥VALID MANOUVRE?¥
REM 3633536536 H %% %%
IF LG=1 THEN GOSUB 49900
REM 3% 3% 5% %% % %%
REM ¥DRAGON RESPONSE*
REM 3% %53 %% %% %%
GOSUB 5099

REM ¥¥UNTIL game over¥¥
IF LOST=90 AND WON =@ THEN 27

REM %¥¥¥XXXXXXXXX

REM ¥END OF GAME¥

REM ¥%¥%%%X%KXXK%X%

IF LOST=1 THEN GOSUB &Q99

IF WON=! THEN GOSUB &1909

REM ¥%%%%% %K% %K% %% %

REM ¥ANOTHER GAME?¥%

REM %%%%%¥X%%%K%%XX%

INPUT"DO YOU WANT ANOTHER GA

iUs

IF LEFT$(U$,1)<>"N" THEN CLS

:GOSUB 6209:G0T0 229
620 REM ¥¥¥¥x

639 REM ¥END¥

649 REM *¥¥%%¥

659 END

133

This control program will remain the same no matter which
version of the game we decide to write so we suggest that you
CSAVE it for future use.

The lines numbered less than 100 simply initialise the
computer. Line 50 CLEARSs an area of 500 bytes at the top of
memory for the exclusive use of strings. Lines 60 and 70
DIMension thearrayswhich the program will use, and line 90
defines two functions which will be used later in the program.
These operations will be explained more fully in a later section.

Step 2. Assign Inventories. Now all we have to do is write the
subroutines which are called from the main program. The first of
these is given here.

Listing 8.2

1199 REM ¥ASSIGN INVENTORIES#*
1200 FOR N=g TO Z

1219 READ IA$(N,),IA$(N,1)

1228 NEXTN

1239 FOR N=¢ TO &

1249 READ IB$(N)

1250 NEXT N

1309 DATA GO, @123, TAKE,S56,0FEN,4
1319 DATA NORTH, SOUTH,EAST, WEST,
DOOR, KEY, EMERALDS

1339 DATA DAMP,MISERABLE,COLD,DA
RK, SCARY, OFPRESSIVE, SMALL , GLOOMY
, LARGE , DRAUGHTY

1349 FOR N=@ TO 4

1358 READ AJ$(N,d),AJS(N, 1)

1348 NEXT N

1379 RETURN

Typethisinwiththe control program. This routine assigns the
inventories. The inventories are arrays containing all the words
(verbs and nouns) which the program needs to be able to
understand.

134

Step 3. Give Instructions. Instructions are needed to tell the
player what to do in the game and what the aim is. However it is
essential not to give too much information here — it is supposed to
be a game of exploration and adventure after alll Combine the
lines of listing 8.3 with your program to date.

Listing 8.3

2?99 REM ¥INSTRUCTIONS#¥*

1999 CLS:PRINTE3,"T R E A S UR

E TRATIL"

1919 PRINTE64, "YOU ARE IN THE DU
NGEONS OF GORM, "j;

1929 PRINT"AND YOU ARE SEARCHING
FOR A"

1939 PRINT"CROWN OF EMERALDS"
1949 PRINT TAB(3); "THE COMPUTER

UNDERSTANDS THE"

1959 PRINT"FOLLOWING VERBS:-"3
1969 FOR N=g TO 2:PRINT TAB(18)3;
IAS(N,Q) :NEXT N

1199 PRINTE@484, "PRESS ANY KEY TO
START"; :A$=INKEYS$

1195 A$=INKEY®$:IF A%="" THEN 119
S

1196 CLS:RETURN

Step 4. Create the Maze. [t is essential to make absolutely certain
that you could win. This routine creates the maze and places the
target, the Crown of Emeralds, and the player at RaNDom
positions. There will always be a possible path from one to the
other but the rest of the maze is decided at random. Listing 8.4
gives the simplest version of the maze creation routine.

Listing 8.4

1399 REM ¥SET STATUS, PLACE CROW
N & PLAYER¥
1499 PRINT TAB(13); "WAIT"

1419 CE=RND(35)

1429 X=RND(35):IF X=CE THEN 14290
ELSE PR=X

1429 REM ¥BUILD A FATH¥*

1439 R=RND(4) :ON R GOSUB 1550, 16
59,1700, 1708

1440 L$="0":IF KEY>@ THEN L$=L%$+
wpn

146¢ L=LEN(L%) :R=RND(L) :0%=MID%(
L$,R,1)

1479 IF 0%$="D" THEN KEY=KEY-1
1489 Y=CE-X:IF Y>S5S THEN RM$(X,3)
=0%: X=X+6:RM$(X,2)=0%:G0TO 1549
1499 IF Y<{-S5 THEN RM$(X,2)=0%:X=
X-6:RM$(X,3)=0%:G0TO 1549

1509 IF Y>3 AND (X+1)/6<>INT((X+
1)76) THEN RM$(X,4)=0%:X=X+1:RM$
(X,5)=0%:G0OTO 1549

1519 IF Y¥>@ THEN RM$(X,3)=0%:X=X
+6:RM$(X,2)=0%:G0TO 1549

1529 IF ¥Y<@ AND X/&<>INT(X/6) TH
EN RM$(X,5)=0%: X=X-1:RM$(X,4)=0%
:GOTO 1549

1539 IF W<@ THEN RM$(X,2)=0%:X=X
~6:RM$ (X, 3)=0%

1549 IF X=CE THEN GOSUB 1899:RMs$
(CE,@)="E":RETURN ELSE GOTO 1439
1549 REM ¥DEPOSIT OBJECT*

1559 L$="N":IF RND{9)>.5 THEN L%
=L$+"K"

1699 L=LEN(L%$):R=RND(L):0%=MID%(
L$,R, 1)

1619 IF 0%="K" THEN KEY=KEY+!
1649 RM$(X,0)=0%:RETURN

1659 RETURN

1799 RETURN

1799 REM ¥COMFLETE MAZE*

15809 OB%="NKN":L%="0DW"

135

136

1805 L=LEN(L$) : 0O=LEN(0%)
1810 FOR N=g TO 35:FOR M=2 T0 S
1820 IF RM$(N,M)="" THEN RM$(N,M
)=MID$(L$,RND(L), 1)

1825 GOSUB 1950

1839 NEXT M

1848 IF N<6& THEN RM$(N,2)="W"
1858 IF N>29 THEN RM$(N,3)="W"
1868 IF (N+1) /6=INT((N+1)/6) THE
N RM$(N,4)="W"

1878 IF N/&=INT(N/&) THEN RM$(N,
S)="w"

1898 IF RM$(N,8)="" THEN RM$(N,0
)=MID$ (OE$,RND(0),1)

1932 NEXT N

1949 RETURN

1949 REM %%COMPLEMENTARY DOORS*#¥
195@ IF M=2 THEN IF N>S THEN RM$
(N-6,3)=RM$(N,M) : RETURN

1968 IF M=3 THEN IF N<39 THEN RM
S(N+6,2)=RMS (N, M) : RETURN

1978 IF M=4 THEN IF (N+1)/6<>INT
((N+1)/6) THEN RM$(N+1,5)=RMS&(N,
M) : RETURN

1988 IF M=5 THEN IF N/&<>INT(N/6
) THEN RM$(N-1,4)=RM$(N,M) :RETUR
N

1999 RETURN

Step S. Describe Situation. Describe the situation and
surroundings to the plaver. At this point we embark on our
adventure, and it is to this point that the program will return

af ter our latest attempt at derring-do has met with total failure.
When we enter each cave the computer describes it and the
objects therein are detailed. It is this section which must produce
the excessive ver biage that is a pre-requisite of adventure games
This routine produces a lot of pleonastic purple prose with much
repetition and even tautologyv. Much of the information is, of

137

course, apocryphal. This task is dealt with by listing 8.5 which is
given below. Once again we must key in the whole lot to add this
function to our program.

Listing8.5

1999 REM ¥DESCRIBE ROOM%

2099 N=RND(S)-1:M=RND(S)-1:A$=AJ

$(N,d) :B$=ATS (M, 1)

2019 PRINT"YOU ENTER A ";A$j", "
iB$;" ":IF RND(@)>.5 THEN PRINT"
CAVE" ELSE PRINT"PASSAGE"

2020 PRINT"YOU SEE: "}:IF RM$(PR
,9)1="N" THEN PRINT"NOTHING":GOTO
2119

2049 IF RM$(PR,@)="E" THEN PRINT
TAB(9); "THE CROWN OF EMERALDS"
2080 IF RM$(PR,@)="K" THEN ON RN
D(4) GOSUB 21&9,2179,2180,2190
2119 FOR N=2 TO S

2129 IF RM$(PR,N)="0" OR RMs$ (PR,
N}="D" THEN PRINT"THERE IS A DOO
R TO THE " IB%(N-2)

2149 NEXT N

2150 NR=@:RETURN

2160 PRINT TAB(9);"A RUSTY KEY":
RETURN

2170 FRINT TAB(9);"A LARGE KEY":
RETURN

218¢ PRINT TAB(9);"A GOLDEN KEY"
:RETURN

2199 PRINT TAB(9);"A WOODEN KEY"
{NR=9: RETURN

Step 6. Player’s INPUT. Wemustallow the player to make his life
and death decisions, carefully weigh the pros and cons and finally
stumble blindly on. In other words, what do you want to do now?
This routine will accept the commands of the player as typed in at

138

the keyboard. We must zdd this section to our rapidly growing
program (bear in mind that computer adventures are always fairly
large programs so you might want to save your program a few
times along the way as an insurance policy against power failure).
Listing 8.6 below contains the instructions to accept INPUT.

Listing 8.6
2499 REM ¥¥FPLAYER INPUT¥¥
2589 FRINTE@S11," ":FPRINT@448,"";

2518 INFUT Us
2520 RETURN

Step 7. Check INPUT is Legal. This section checks that what you
typed actually made sense, e.g. that it uses a legal verb like GO or
TAKE, and in a legal manner, such as GONORTH. (GO BANANAS is
not legal input). Type this section in from the next listing.

Listing 8.7

2999 REM *X*LEGAL MANOUVRE?¥¥
3999 LG=g: IF INSTR(1,Us,"QUIT")>
d THEN @=1:RETURN

3919 IF LEFT$(Us,1)=" " THEN Us$=
RIGHT$ (U$,LEN(U$)-1):G0TO 3919
3928 IF RIGHT$(U$,1)=" " THEN U$

=LEFT$(Us,LEN(U$)-1) :GOTO 3020
3099 REM *INVENTORY SEARCH¥*

3190 Z$="":Z1%="":22%="":L=INSTR
(1,Us," ")

3195 IF L=@ THEN W1$=U$:G0TO3120
ELSE WI1$=LEFT$((U$),L-1):REM FI

ND VERB

3110 Z$=RIGHT$(U$,LEN(US$)-L):REM
REST OF STRING

3120 X=-1:FOR V=@ TO 2

3130 IF Wis=IA%(V,d) THEN X=V:V=
2

3148 NEXT V

139

3159 IF X=-1 THEN RF=2:RETURN
3159 REM FIND OBJECT OF VERB
31690 L$=IA®(X,1}:¥=-1

3178 FOR N=1 TO LEN(L$)

3189 M=VAL ("&H"+MIDE(LE,N, 1))
3199 IF INSTR(1,Z%,IB%(M))>9 THE
N Z1$=IB$(M):1Y=MIN=LEN(LS!}

3209 NEXT N

3219 IF Y=-1 THEN RF=3 ELSE LG=1
3215 RETURN

Step 8. Perform Instruction. Well, we’ll try to! Just because GO
NORTH seems like a reasonable idea doesn’t mean we can
necessarily do it. There might be a blank wall in the way. There
are so many possibilities that the routine is made up of many
smaller routines which deal with individual words. This sort of
further subdivision of tasks is a common feature in structured
programs and makes both reading and writing them a lot easier.

Listing 8.8

3999 REM ¥¥VALIDITY CHECK#¥

4900 RF=0;0K=g:0ON X+1 GOSUB 4109
,4200,4300

4910 IF OK=1 THEN RF=16

4930 RETURN

4099 REM *¥GO¥*

4199 REM

419% DR=-1:FOR N=@ TO 3

4119 IF INSTR(1,Z8®,IBS(N))>? THE

N DR=N+2:N=3

4129 NEXT N

4125 IF DR=-1 THEN RF=14:RETURN

4139 IF RMS(PR,DR)="0" THEN OK={
! PR=PR+FNR (DR) ! NR=1:RETURN

4149 IF RM$(PR,DR)="D" THEN RF=5
ELSE RF=4

4150 RETURN

140

4199 REM X¥TAKE¥¥

4288 REM

4219 IF RM$(PR,J)<>LEFT$(IB%(Y),
1) THEN RF=6:RETURN

4229 OK=1:PS(Y-5)=PS(Y-5)+1

4239 RM$(PR,d)="N"

4249 RETURN

4299 REM *¥OPEN¥¥

4399 REM

4395 IF PS(9)<1 THEN RF=7:RETURN
4319 LD=@:DR=@:FOR N=¢g TO 3

4329 IF DR=¢ THEN IF INSTR(1,2%,
IB$(N)) >0 THEN DR=N+2

4330 IF LD=@ THEN IF RM%(PR,N+2)
="D" THEN LD=t

4349 NEXT N

4359 IF DR=9 THEN RF=14:RETURN
4369 IF LD=9 THEN RF=8:RETURN
4379 IF RM$(PR,DR)<>"D" THEN RF=
8:RETURN

4389 RM% (PR, DR)="0":R=PR+FNR(DR)
:DR=FND(DR) :RM&%(R,DR)="Q"

4399 PS(Q)=PS(@)-1:K=-1:0K=1:RET
URN

Step 9. Computer Response. By now we have figured out what
has just happened with regard to the player’s commands. We
need to tell the player what he has (or more likely what he has
not) achieved. Which response is given depends upon the RF
response flag set by the previous routines. The choice of response
is dealt with by listing 8.9 so add this to your program.

Listing 8.9

4999 REM *¥RESPONSEX¥

5999 ON RF GOSUB S5209,5219,5229,
5239,5249, 5250, 5260, 5279, 5280 ,52
99,5399, 5319, 5320, 5339, 5349, 5350
, 5409, 5509,5519, 5529

S@19 IF PS(1)=1 THEN WON=1:RETUR

N

S929 IF LOST=1 THEN RETURN

S139 RETURN

S299 PRINT"WHAT?!":RETURN

5219 PRINT"I DO NOT KNOW THE VER
B "jWI$:RETURN

S229 PRINT"YOU CANNOT "jWis;" "j
Z1%;Z2%:RETURN

S239 PRINT"YOU CANNOT GO ";Z#$:RE
TURN

5249 PRINT"THE DOOR IS LOCKED.":
RETURN

5259 PRINT"I SEE NO ";3;2%;" HERE"
:RETURN

S269 PRINT"BUT YOU DO NOT HAVE A
KEY !" {RETURN

S279 PRINT"THERE IS NO LOCKED DO
OR TO OPEN HERE":RETURN

S339 PRINT"WHICH DIRECTION?":RET
URN

S359 PRINT"YOU "j;Us

S369 IF K=-1 THEN PRINT"BUT"j
S379 IF K=-1 THEN IF RND(@)>.S T
HEN PRINT" THE KEY BREAKS":K=g E
LSE PRINT" THE KEY GETS STUCK, Y
OU MUST LEAVE IT BEHIND.":K=g
S399 RETURN

141

Step 10. Check for End of Game. If the game is neither won nor
lost we have to loop back to the description routine (Step S). This
task has been incorporated into the control program, so there is

no need to have a separate LISTing for this routine.

Step 11. End of Game Message. There are two routines in this
section of which only one will be called, depending on whether
the game has been won or lost. We will need to enter both,
though, to guard against the possibility of success. So type in

142

both listings below (listings 8.11a and 8.11b).

Listing 8.11a

S999 REM *XLOST**

6999 PRINT"YOU HAVE LOST THE GAM
E, BAD LUCK"

6919 RETURN

Listing 8.11b

6979 REM ¥¥WON¥¥*

6199 PRINTYCONGRATULATIONS - YOU
HAVE", "RECOVERED THE FABULOUS C

ROWN OF EMERALDS!! WELL DONE!"
6119 FOR N=1 TO 2098

6128 SOUND N, 1

6139 NEXT

6142 RETURN

Step 12. Round Again. This section of the control program asks
the player if he wants another game, and if he does then the
subroutine in Listing 8.12 is called, which resets the flags and the
possessions array (more about that later) and RETURNSs to the
control program, which promptly loops back to Step 3.If , on the
other hand, the player answers “NO” then the control program
carries on to its last statement — END. This produces the usual
chirpy OK and puts the computer back in command mode.

Listing 8.12

6199 REM ¥RESET*

6209 WON=g:LO0ST=2
6219 FOR N=g TO S
6229 PS(N)=@2

6233 NEXT N

6299 RETURN

And

that’s it! Your final listing should look like this:

Listing 8.13

19
29
39
49
S
&9
(2)
79
S(S
89
°9
ND
S):
+(D
199
119
129
139
149
150
169
179
139
sk¥
199
209
219
229

5
239
*%

249
259
269

REM %% %% %% %KX XXXX

REM ¥TREASURE TRAIL¥

REM ¥¥¥%HHHHHHHXXXXK

REM ¥¥ INITIALISE DRAGON ¥¥
CLEAR S©9
DIMIA%$(7,1):DIMIB$(19):DIMICS

DIMRM$(35,5) :DIMAJ$(4,1) :DIMFP
)
FOOD=@: BATTERIES=0: MN=0

DEF FNR(DR)=(6 AND DR=3)-(6 A
DR=2)+(1 AND DR=4)-(1 AND DR=
DEF FND(DR)=DR-(DR=2 OR DR=4)
R=3 OR DR=5)

REM 3%%3%%% %K% %% %K% K% XX XXX

REM ¥ASSIGN INVENTORIES*

REM 335355 % % %% %% %% X X %% %
GOSUB 1209

REM %%%%%% %% %X X% %%

REM ¥INSTRUCTIONS¥*

REM %%%¥%%%% %% %X %%

GOSUB 1999

REM ¥¥REFEAT UNTIL user quit

REM %¥¥¥XXX%XXXXX
REM ¥CREATE MAZE¥
REM %¥¥%%¥%HHXKXX%
GOSUB 1499:NR=1:FRINT@448,""

REM ¥¥REFEAT UNTIL game over
REM %%%%%%%%% %%

REM ¥NEW ROOM?¥
REM ¥¥¥¥HK%K%KH¥

143

589
S99
699

ON NR+1 GOSUB 2029,2000
REM ¥X%XXXXXXXXXXXX

REM ¥PLAYER INFUT¥

REM ¥XXXXXXXXKXXXX

GOSUB 2599

REM X¥¥XXXXXXXXXXXXXKXX

REM ¥LEGAL MANOUVRE?¥

REM ¥XX¥XXKXXKXXXXXKXX
GOSUB 3999:IF @=1 THEN 659
REM XXXXXXXXXXXXXXXXX

REM ¥VALID MANOUVRE?¥

REM XXXXXXXXXXXXXXXXX

IF LG=1 THEN GOSUB 490909
REM XX%¥XXXXXHXXXXXXXX

REM ¥DRAGON RESFONSEX

REM ¥XXXXXXXXXXXXXXXX
GOSUB S9990

REM ¥¥UNTIL game over¥¥

IF LOST=9 AND WON =@ THEN 27

REM ¥XXXXXXXXXXXX

REM XEND OF GAMEX

REM XXXXXXXXXXXXX

IF LOST=1 THEN GOSUB 6099

IF WON=1 THEN GOSUB 6109
REM ¥¥XXXXXXXXXXXXX

REM ¥ANOTHER GAME?¥

REM X¥XXXXXXXXXXXXXX

INPUT"DO YOU WANT ANOTHER GA

ME"; US$

619

IF LEFTS(U%, 1)<>"N" THEN CLS

:GOSUB 6209:G0T0 229

629
639
649
659
299

REM *¥¥¥X%

REM ¥END¥

REM ¥¥%%%

END

REM ¥INSTRUCTIONSX

1900 CLS:PRINT@3,"T R E A S U R

E TRATIL"

1018 PRINT@64, "YOU ARE IN THE DU

NGEONS OF GORM, ";

1928 PRINT"AND YOU ARE SEARCHING
FOR A"

1939 PRINT"CROWN OF EMERALDS"
1949 PRINT TAB(3);"THE COMPUTER

UNDERSTANDS THE*™

1950 PRINT"FOLLWING VERBS:-";
1960 FOR N=¢ TO 2:FRINT TAB(18);
IAS(N,@) :NEXT N

1199 PRINT@484, "PRESS ANY KEY TO
START"; : AS=INKEYS

1195 A$=INKEY$:IF A$="" THEN 119

5

1196 CLS:RETURN

1199 REM ¥ASSIGN INVENTORIES¥
1208 FOR N=¢ TO 2

1219 READ IAS$(N,@),IAS(N, 1)

1228 NEXTN

1239 FOR N=¢ TO 6

1249 READ IB$(N)

1250 NEXT N

1398 DATA GO,9123, TAKE,S6,0FPEN, 4
1319 DATA NORTH,SOUTH,EAST,WEST,

DOOR, KEY, EMERALDS

1339 DATA DAMP,MISERABLE,COLD,DA

RK,SCARY, OPFRESSIVE, SMALL , GLOOMY
, LARGE , DRAUGHTY

1349 FOR N=¢ TO 4

1350 READ AJS(N,d),AJS(N, 1)

1360 NEXT N

1378 RETURN

1399 REM ¥SET STATUS, PLACE CROW

N & PLAYER%¥

1409 PRINT TAB(13); "WAIT"

145

146

1419 CE=RND(395)

1429 X=RND(35):IF X=CE THEN 1429
ELSE FPR=X

1429 REM ¥BUILD A PATHX

1439 R=RND(4) :ON R GOSUB 1559,16

59, 1700, 1700

1449 L$="0":IF KEY>@ THEN L$=L%$+
npw

1469 L=LEN(L%):R=RND(L) :0%=MID%(

L$,R, 1)

1479 IF 0%="D" THEN KEY=KEY-1
1489 Y=CE-X:IF Y>5 THEN RM%(X,3)

=0%: X=X+6:RM$(X,2)=0%:G0OTO 1549

1499 IF Y-S5 THEN RM%$(X,2)=0%:X=

X-6:RM&E(X,3)=0%:G0TO 1549

1509 IF Y>@ AND (X+1) /6<OINT((X+
1)/6) THEN RM$(X,4)=0%:X=X+1:RM$
(X,5)=0%:G0TO 1549

1519 IF Y>3 THEN RM$(X,3)=0%:X=X

+6:RM$(X,2)=0%:G0TO 1549

1529 IF Y<@ AND X/6<>INT(X/6) TH

EN RM$(X,5)=0%:X=X-1:RM$(X,4)=0%
:GOTO 1549

1539 IF Y<@ THEN RM$(X,2)=0%:X=X

-6:RM$ (X, 3)=0%

1549 IF X=CE THEN GOSUB 189J:RM$
(CE,@)="E":RETURN ELSE GOTO 1439
1549 REM ¥DEFOSIT OBJECT*

1559 L$="N":IF RND(@)>.5 THEN L%

=L$+"K"

1699 L=LEN(L$) :R=RND (L) :0%=MID%(

L$,R, 1)

1619 IF 0%$="K" THEN KEY=KEY+!l
1649 RM$(X,d)=0%:RETURN

1659 RETURN

1799 RETURN

1799 REM *COMFLETE MAZE¥

1508 OB$="NKN":L$="0DW"
1805 L=LEN(L$):0=LEN(O0%)

1819 FOR N=@ TO 35:FOR M=2 TO S
1828 IF RM$(N,M)="" THEN RM$(N,M
)=MID$(L$,RND(L), 1)

1825 GOSUB 1959

1839 NEXT M

1840 IF N<& THEN RMS$(N,2)="W"
1856 IF N>29 THEN RM$(N,3)="W"
1868 IF (N+1)/6=INT((N+1)/6) THE
N RMS(N,4)="W"

1879 IF N/6=INT(N/&) THEN RM$(N,
Sy=ru*

1899 IF RM$(N,8)="" THEN RM$(N,d
) =MID$(OB$,RND(0),1)

1938 NEXT N

1949 RETURN

1949 REM ¥¥COMPLEMENTARY DOORS¥¥
1958 IF M=2 THEN IF N>5 THEN RM$
(N-6,3)=RM$(N,M) : RETURN

1960 IF M=3 THEN IF N<3@ THEN RM
$(N+&,2)=RMS(N,M) : RETURN

1978 IF M=4 THEN IF (N+1)/6<3>INT
((N+1)/6) THEN RM$(N+1,5)=RMS$(N,
M) : RETURN

1988 IF M=5 THEN IF N/&<>INT(N/6&
) THEN RM$(N-1,4)=RM$(N,M):RETUR
N

1999 RETURN

1999 REM ¥DESCRIBE ROOM¥

2099 N=RND(5)-1:M=RND(5)-1:A$=AJ
$(N,0) : BE=AJS (M, 1)

2019 PRINT"YOU ENTER A ";As$;", *

iB$; " ":IF RND(@)>.5 THEN PRINT"
CAVE" ELSE PRINT"PASSAGE"
2020 PRINT"YOU SEE: ";:IF RM$(PR

,@)1="N" THEN PRINT“NOTHING":GOTO
2119

147

148

2049 IF RM$(FR,Q)="E" THEN FRINT
TAB(?); "THE CROWN OF EMERALDS"
20980 IF RM$(FR,@)="K" THEN ON RN

D(4) GOSUB 2169,2170,21890,21%9
2119 FOR N=2 TO S

2120 IF RM$(FR,N)="0" OR RM$(FR,
N)="D" THEN FRINT"THERE IS A DOO
R TO THE ";IB®(N-2)

2149 NEXT N

2159 NR=@:RETURN

2169 FRINT TAB(?)3;"A RUSTY KEY":

RETURN
2179 FRINT TAB(?); "A LARGE KEY":
RETURN
2189 FRINT TAB(9)i"A GOLDEN KEY"
:RETURN

2199 PRINT TAB(9); "A WOODEN KEY*
:NR=0:RETURN
2499 REM ¥¥PLAYER INFUT¥¥
2509 PRINTRS11," ":PRINT@448,"";
2519 INPUT Us$
520 RETURN
99 REM ¥¥LEGAL MANOUVRE?Z¥¥
LG=g:IF INSTR(1,Us,"QUIT")>
THEN @=1:RETURN
3010 IF LEFT$(U$,1)=* * THEN Us=
RIGHTS$ (Us,LEN(U$)-1):GOTO 39010
3020 IF RIGHT$(U$,1)=" " THEN U$
=LEFT$ (U$, LEN(U$) - 1) ; GOTO 3920
3099 REM ¥INVENTORY SEARCH#¥
3100 Z$="":Z1%$="":122%="":L=INSTR
(1,Us," ")
3195 IF L=0 THEN W1%=U$:GOT03129
ELSE WI1$=LEFT$((U$),L-1):REM FI
ND VERB
3119 Z$=RIGHT$(U$,LEN(US$) -L) : REM
REST OF STRING
3129 X=-1:FOR V=0 TO 2

[WE SIS
Q
Q
Q

149

3139 IF Wis=IA%(V,0) THEN X=ViV=

2

3149 NEXT V

3159 IF X=-1 THEN RF=2:RETURN
3159 REM FIND OBJECT OF VERB

3169 L$=IA%(X,1):Y¥Y=-1

3179 FOR N=1 TO LEN(LS$)

3189 M=VAL ("&H"+MIDH(LS,N, 1))

3129 IF INSTR({,Z%,IB$(M)) >3 THE

N Z1%$=IB%(M):Y=MIN=LEN(LS)

3209 NEXT N

3219 IF Y=-1 THEN RF=3 ELSE LG=1
3215 RETURN

3999 REM ¥XVALIDITY CHECK¥¥

4999 RF=0:0K=@:0ON X+1 GOSUB 4199
» 4299, 4399

4919 IF OK=1 THEN RF=16&

4939 RETURN

4999 REM %¥GO¥*

4199 REM

4195 DR=-1:FOR N=¢g TO 3

4119 IF INSTR(1,2%,IB$(N)) >0 THE

N DR=N+2:N=3

4129 NEXT N

4125 IF DR=-1 THEN RF=14:RETURN

4139 IF RM$(PR,DR)="0" THEN OK={
:PR=PR+FNR (DR) : NR=1:RETURN

4149 IF RM$(PR,DR)="D" THEN RF=S
ELSE RF=4

4159 RETURN

4199 REM **¥TAKE¥¥

4289 REM

4210 IF RM® (PR, Q)< >LEFTS(IBH(Y),
1) THEN RF=6:RETURN

4229 OK=1:PS(Y-S5)=PS(Y-5)+1

4238 RM$(PR,g)="N"

4249 RETURN

4299 REM %¥OPEN¥¥

150

4300 REM

4365 IF PS(@)<1 THEN RF=7:RETURN

4319 LD=@:DR=9:FOR N=g TO 3

4320 IF DR=9 THEN IF INSTR(1,Zs,
IBS(N))>@ THEN DR=N+2

4330 IF LD=@ THEN IF RM$(PR,N+2)

="D" THEN LD=1

4349 NEXT N

4359 IF DR=@ THEN RF=14:RETURN

4369 IF LD=g THEN RF=8:RETURN

4379 IF RM$(PR,DR)<>"D*" THEN RF=

8:RETURN

4380 RM$(PR,DR)="0":R=PR+FNR (DR)
:DR=FND(DR) :RM$ (R,DR)="0"

4399 PS(8)=PS(@)-1:K=-1:0K=1:RET

URN

4999 REM X¥%RESPONSEX¥

5009 ON RF GOSUB 5209,5210,5224,

5230, 52490, 5259, 5260, 5279, 5280, 52

99,53090,5319, 5329, 5339, 5349, 5350
,54900,5509,5510, 5529

5919 IF PS(1)=1 THEN WON=1:RETUR

N

5029 IF LOST=1 THEN RETURN

5139 RETURN

5200 PRINT*WHAT?! " :RETURN

5219 PRINT”I DO NOT KNOW THE VER
B ";W1$:RETURN

5229 PRINT"YOU CANNOT ";Wis$s”" *;
Z1%;Z$:RETURN

5239 PRINT"YOU CANNOT GO ";Z%:RE
TURN

5249 PRINT*THE DOOR IS LOCKED.":

RETURN

5259 PRINT*I SEE NO ";2%;* HERE"
:RETURN

5269 PRINT"BUT YOU DO NOT HAVE A
KEY ! " :RETURN

5279 PRINT"THERE IS NO LOCKED DO
OR TO OPEN HERE ":RETURN

5339 PRINT"WHICH DIRECTION?":RET
URN

535¢ PRINT*YOU ";Us

5360 IF K=-1 THEN PRINT"BUT";
5379 IF K=-1 THEN IF RND{@)>.5 T
HEN PRINT* THE KEY BREAKS":K=8 E
LSE PRINT*" THE KEY GETS STUCK, Y
ou MUST LEAVE IT BEHIND.":K=g
5399 RETURN

5999 REM ¥%XLOST¥%

6009 PRINT"YOU HAVE LOST THE GAM
E, BAD LUCK"

6816 RETURN

6099 REM %¥WONX¥

6109 PRINT"CONGRATULATIONS - YOU
HAVE" , "RECOVERED THE FABULOUS C
ROWN OF EMERALDS!' WELL DONE!'"
6119 FOR N=1 TO 209

6120 SOUND N, 1

6138 NEXT

6149 RETURN

6199 REM ¥RESET#*

6209 WON=@:L0ST=0

6219 FOR N=98 TO 4

6220 PS(N) =@

6230 NEXT N

6292 RETURN

151

I suggest that you CSAVE it immediately, before Grandma comes
over again! When you’ve done that, RUN the program and see if

you can find the Crown of Emeralds. GOOD LUCK!

152

ADDING FEATURES TO THE GAME

Now that we have our basic (nopun intended) game, we can
think about adding various additional features to it. The features
which can be added are limited only by your imagination (and the
Dragon’s memory of course). In the following sections we will see
how to add five sets of additional features and by the end of this
section you should have a reasonable idea of how the system
works. Chapter 9 goes into the details of planning behind the
various routines and by the end of that chapter you should be
able to make your own alterations.

The program is designed so that features can be stuck on to it
like Lego bricks — in a similar way to that in which we could add
the ability to move up and down (for example) in our arcade
game. There is a difference, however, due to the very nature of
the game. Whereas in the arcade game, the routine for (say)
moving the alien didn’t give a hoot whether you could move up
and down or not, in theadventure game alterations need to be
made toalmost all sections when a new feature is added. This is
like the suggested alteration toallow a highscore to be kept in the
arcade game. In thatcase we had to go through the program
altering quite a few of the routines to allow for the new feature. In
just the same way we are going to have to go methodically
through our adventure routinesadding lines to each procedure.

FOOD AND STRENGTH

The first feature which we add we willcallFOOD & STRENGTH.
The first thing to do to it is figure out how this feature is related
to the game scenario.

We conjure up an evil force which pervades the chill caverns in
which we are adventuring. The constant forces of cold and evil
sap your physical and spiritual strength. To combat this we
will have food which restores your fitness, body and soul. If
however you do not find any food you will weaken and die!

The first section we have to add is given in listing 8.2a and this is
adding to the inventory of objects in the dungeon. After all, if we

153

are going to put food in the maze, the computer is going to need
to know about it. So, with your original game in memory, add in
the following lines.

Listing 8.2a

1209 FOR N=¢ TO 3

1239 FOR N=g TO 7

1399 DATA GO, @123, TAKE, 567, OPEN,
4,EAT, 76

1319 DATA NORTH,SOUTH,EAST, WEST,
DOOR, KEY, EMERALDS, FOOD

The next thing we need to do is to tell the player about the
presence of the food and the evil spirit. We add these lines to the
instruction routine (listing 8.3a).

Listing 8.3a

1068 FOR N=g TO 3:FRINT TAB(18);
IAS (N, @) :NEXT N

1979 FRINT@458, "FRESS ANY KEY TO
CONTINUE"; : A$=INKEYS

1950 A$=INKEY$:IF A$="" THEN 108

o

1955 CLS

1119 PRINT:PRINT"THERE IS AN EVI

L FORCE IN THE"

1129 PRINT"DUNGEONS, AND IT DRAI
N3 YOUR"

1138 PRINT"STRENGTH, BUT IF YOU
ARE LUCKY"

1149 PRINT"ENQUGH TO FIND THE MA
GIC FOUOD,"

1150 PRINT"YOU MAY SURVIVE. "

We now need to set the strength of the player and also change the
“‘create maze” routine so that it distributes some food around the

154

place as well as the other things. Add the couple of lines given in
listing 8.4a to take care of this.

Listing 8 4a

1495 ST=1099
1580 IF RND(Q)>.7 THEN L$=L$+"F"

The next thing to add is a line to make the computer tell us if
there is actually some food in the room when we enter it. This is
done by the line in listing 8.5a

Listing 8 5a

2060 IF RM$(FR,0)="F" THEN FRINT
TAB(?); "SOME FOOD"

O fcourse at some stage w e are going to want t o EAT FOOD. so the
computer must recognise this as a legal command. Add these
lines to the legality checking procedures (listing 8.7a).

Listing 8.7a

31209 X=-1:FOR V=0 70 3

3139 IF Wis=IA%(V,d) THEN X=V:V=

1

Similarly, we must add a routine to deal with an EAT command.
Listing 8.8a has the lines to alter this section to call a new routine
which deals with EATing.

Listing 8 .8a

4000 RF=0:0K=0:0N X+1 GOSUB 4189
,4200,4300, 4490

4399 REM X¥XEAT*¥

4400 REM

4405 IF PS(Y-5)<1 THEN RF=18:RET
URN

4410 IF IB$(Y)<>"FOOD" THEN RF=1
1 :RETURN

4429 OK=1:PS(2)=F5(2)-1:5T=1000
4439 RETURN

Finally to make life more fun add listing 8.9a to the responsc
section. This will deal with PRINTing messages for the various
eating habits possible and also add lines to warn the player of

impending doom.

Listing 8.9a

SP3Y ST=ST-39:IF ST>S5990 THEN S19

5]

SP49 IF ST>499 THEN FRINT"YOUR S
TRENGTH IS FADING.":GOTO S199
S959 IF ST»399 THEN FRINT"YOU AR

E GETTING VERY WEAK":GOTO S199

SP69 IF ST>200 THEN FRINT"YOUR S
TRENGTH IS EBBING FAST - YOU CA

N’T GO ON MUCH LONGER":GOTO S199
SEP79 IF ST:199 THEN FRINT"IF YOU
DON’T EAT SOCN, YOU’VE HAD IT
'":GOTI S100

S98¢ IF STXg THEN FRINT"YOU’RE O

N YOUR LAST LEGS MATE!":GOTO S19

5]

5999 FRINT"YOU HAVE DIED OF EXHA

USTION!":LOST =1:RETURN

S199 RETURN

S299 FRINT"'YOU DO NOT HAVE THE *
i Z%:RETURN

S399 PRINT"YOU EAT THE "i2%5". Y

ou", "CHOKE TO DEATH!":LOST=1:RET

URN

That completes our first modification. RUN the program and

convince yourself that no disasters have occurred.

156
TORCH AND BATTERIES

Our next modification deals with TORCH & BATTERIES supplies.

You have a torch, and it’s just as well, because the resident
goblins don’t like the light. What they would like, though, is to
eat you. In fact they think that you're the best thing since
sliced bread and preferably between slices as a snack for them.
If your torch goes out then . . . The problem is that your
batteries only last for 15 minutes, so unless you can find some
more within that time, you will be eaten.

Well, that should put the pressure on a bit. Once again we will
need to make modifications to several routines and as before the
first place to add things is in the inventory. Add listing 8.2b.

Listing 8.2b

238 FOR N=g TO 8
1368 DATA GO, @123, TAKE, 5678, 0PEN
,4,EAT, 768
1318 DATA NORTH,SOUTH, EAST, WwEST,
DOOR, KEY, EMERALDS, FOOD, BATTERIES

We need to tell the player too (unless you are feeling heartless) so
add the lines of listing 8. 3b to the instructions routine.

Listing 8.3b

1169 PRINT:PRINTTAB(3}; "ALSO, ON
LY YOUR TORCHLIGHT"

1179 PRINT“STOPS THE GOBLINS FRO
M EATING"

1189 PRINT"YOU, AND BATTERIES ON
LY LAST 1S5 *;*"MINUTES! GOOD LuC
K!"

Now we need to let the maze creation routine know there are
extra objects to be distributed and we must also set the TIME
variable to allow us to keep track of the number of turns you’ve
had. Add listing 8.4b.

157

Listing 8.4b

1495 ST=1099:TIMER=@
1899 OB$="NKBN":(L$="0DW"

Add the following to the room description routine.

Listing 8.5b

2979 IF RM$(PR,d)="B" THEN PRINT
TAB(?); "SOME BATTERIES"

Listing 8.8b will save your b(e)acon if you pick up some
batteries.

Listing 8.8b
4225 IF Y=8 THEN TIMER=¢

Now givethe computer a few words to say to tell you what a mess
you’re making of the game.

Listing 8.9b

S199 TM=1S-INT(TIMER/3999)

S119 IF TM<1 THEN PRINT"YOUR TOR
CH HAS GONE OUT.","THE GOBLINS H
AVE EATEN YOU.":LOST=1:RETURN
S129 IF TM<é THEN PRINT"YOUR BAT
TERIES HAVE ONLY"3;TM, "MINUTES PO
WER LEFT"

And that’s it! Try the game again and see if you survive.

158

TROLLS, RUN, FIGHT AND TELEPORT

If you have not met the goblins yet you might be feeling lonely
wandering around the maze, so how about introducing some
trolls to keep you company!

Trolls are lurking in the caves, and you never know when you
are about to stumble upon one of these thin, rubbery and
loathsome creatures. When you do you will have to decide
whether to run or fight — if you try to doanythingelse he will
attack you anyway. Fortunately you can usually beat him in a
fight (although this might not be the case if your strength is
low). If you find yourself cornered you have one other option —
teleport — but heaven knows where you will end up if you use
it, and it weakens you considerably to do so.

This modification has brought in the three new verbs RUN, FIGHT
and TELEPORT and one new noun TROLL. Also it seems that
tangling with a troll will affecta player’s strength (as will
teleporting) and that the presence of a troll will prevent him from
picking up objects, opening doors etc. We begin to see how
closely interrelated things become in adventure games as soon as
they have more than one or two features. Implementing this
feature follows the same pattern as the previous modifications.
First of all we add the new words in listing 8.2c.

Listing 8.2¢

1200 FOR N=g TO &

1240 FOR N=g TO 9

1278 READ IC$(N)

1280 NEXT N

1308 DATA GO, @123, TAKE, 5678, 0PEN
,4,EAT, 768,RUN, ,FIGHT, , TELEFORT,
1320 DATA TROLL

Next we give the player a cryptic hint of what is to come with the
addition of listing 8.3c to the instructions.

159

Listing 8.3¢

1969 FOR N=g@ TO &:FRINT TAB(18);
IAS(N,d) :NEXT N

1999 FRINT"THERE ARE HIDDEN HAZA
RDS IN THE “;

1199 FRINT"DUNGEONS, WHICH YOU W
ILL HAVE TO"; "OVERCOME. *

Again we alter the maze routinc to deposit a few trolls on its way
to creating a maze.

Listing 8.4¢

1649 REM XDEFOSIT HAZARD¥
1650 L$="N":IF RND(9)>.5 THEN L%
=L+"T"

1679 L=LEN(L$):R=RND (L) : 0%$=MI D% (
L$,R, 1)

1699 RM${x, 1)=0%

1800 OB$="NKBN":L$="0DW":H$="NTN
1805 L=LEN(L$):0=LEN(O%$) :H=LEN (H
EY)

1895 IF RM$(N, 1)="" THEN RM$(N, 1
) =MID$ (H$,RND(H), 1)

Next we make certain that the computer is actually going to tell
you when you bump into a troll. Add listing 8.5¢

Listng 8.5¢

2929 FRINT*YOU SEE: ";:IF RM$(FR
39)="N" AND RM$(FR,1)="N" THEN F

RINT*NOTHING":GOTO 21190

2099 IF RM$(FR,1)="T" THEN FRINT
TAB(?)3;"A SMELLY TROLL":MN=1

160

As before we have to alter the routine to recognise valid
commands so that it will accept these words. This is done by
listing 8.7c.

Listing 8.7¢

3129 X=-1:FOR V=g TO 6

3139 IF Wis=IA%(V,d) THEN X=V:iV=
)

3155 IF X>3 THEN LG=1:RETURN

You have probably noticed by now that the routine to perform
verbs has one smaller section for each verb. The following listing
contains routines for each of RUN, FIGHT and TELEPORT. Type in
all of the listing given below.

Listing 8 .8¢

4090 RF=@:0K=0:0N X+1 GOSUB 4109
, 4200, 4309, 4409,4700, 4890, 4590
4929 IF MN=1 AND RF<>12 THEN RF=
17

4109 IF MN={ THEN RETURN

4209 IF MN=1 THEN RETURN

4399 IF MN=1 THEN RETURN

4499 IF MN=1{ THEN RETURN

4699 *¥¥RUN¥*

4799 IF RM$(FR, 1)="N" THEN RF=1:
RETURN

479S FOR N=2 TO S

4719 DR=@:IF RME(FR,N)="0" THEN
DR=N:IN=3

4729 NEXT N

4739 IF DR=g THEN RF=29:RETURN
4749 FR=FR+FNR(DR) :MN=@:RF=18:NR
=1

4759 RETURN

4799 REM ¥XFIGHT*¥

4899 IF RM$ (PR, 1)="N" THEN RF=1:
RETURN

4819 MN=g:ST=ST-RND(199)

4829 RM$(FR,1)="N":RF=19

4839 RETURN

4899 REM XX¥TELEFORT¥¥

4999 NR=1:FR=RND(36)-1:5T=5T-2090
4919 RF=16:MN=9

4929 RETURN

Finally weadd listing 8.9¢ to the response section and we’re
finished.

Listing 8.9

S499 FRINT®"YOU TRY TO "j;Us$, "BUT
YOU ARE ATTACKED BY THE *

S429 IF RM$(FPR,1)="T" THEN FRINT
"SMELLY TROLL"

S439 R=RND(199)+189:S5T=5T-R

5449 RM$(FR, 1) ="N":IMN=g

S459 IF ST<1 THEN LOST=1

S469 IF ST<1 THEN FRINT"YOU ARE
TOO WEAK TO KILL HIM, HEEATS YOU
S479 IF ST>3 THEN FRINT®“YOU KILL
HIM, HE CRUMBLES TO pusT*
S489 RETURN

5509 FRINT"YOU RUN ";IB$(DR-2):R
ETURN

S519 FRINT"YOU FIGHT THE BEAST,
YOU STAVE IN HIS SKULL. HE CRU
MBLES TO DUST":RETURN

S529 FRINT"YOU CANNOT RUN - THE
ENTRANCES ARE CLOSED":RETURN

RUNthe program again and look outforthe trolls!

161

162

MONSTERS AND MAGIC DUST

Well, things are starting to hot up a bit now, aren’t they? Now for
another action packed feature.

Monsters are found in the dungeons. These have the same
effect on you as trolls but nastier. There are also little piles of
magic dust in the labyrinths. If you throw this at the monsters
then they will vanish.

This introduces another verb, THROW, and two more nouns,
MONSTER and MAGIC DUST, so the first thing to do is add these
to the inventory section.

Listing 8.2d

1209 FOR N=¢ TO 7

1239 FOR N=¢ TO 9

1260 FOR N=g TO 1

1360 DATA GO,@123, TAKE, 56789, 0PE
N,4,EAT, 7689 ,RUN, ,F IGHT, , TELEPOR
T,, THROW, 56789

1319 DATA NORTH, SOUTH,EAST,WEST,
DOOR, KEY, EMERALDS,F0O0D, BATTERIES
,MAGIC DUST

1326 DATA TROLL,MONSTER

Add listing 8.3d to tell the player he can THROW things.

Listing 8.3d

1960 FOR N=g TO 7:PRINT TAB(18);
IA$(N, D) :NEXT N

As usual we have to change the maze creation routine so that it
puts the new objects into the maze. We will also make sure that
there is always a monster guarding the Crown of Emeralds. To do
this we add the nextlisting.

163

Listing 8.4d

1549 IF X=CE THEN GOSUB 1899:RM$
(CE,@)="E":RM$(CE, 1)="M"IRETURN

ELSE GOTO 143@9

1579 IF RND(@)>.6 THEN L$=L$+"M"
1639 IF 0O%="M" THEN MD=MD+1

1669 IF MD>J THEN IF RND(g)>.8 T
HEN L$=L$&+"M"

1689 IF O0%="M" THEN MD=MD-1

1809 OB$="NKBN":L$="0DW":H®="NTM
N

Now we need to add listing 8.5d to make sure the player is fully
informed when he enters a room.

Listing 8.5d

2959 IF RM$(FR,©Q)="M* THEN PRINT
TAB(?); "SOME MAGIC DUST"

2199 IF RM$(FR,1)="M" THEN PRINT
TAB(?); "A HIDEOUS MONSTER™":MN=1

Now we must extend the legal input check procedure to check
that you have thrown something which is throwable (e.g. not a
door). Add listing 8.7d to the program.

Listing 8.7d

3120 X=-1:FOR V=0 TO 27

3138 IF Wis=IA$(V,d) THEN X=V:V=
7

3155 IF X>3 AND X<7 THEN LG=1:RE
TURN

3219 IF Y=-1 THEN RF=3:RETURN
3215 REM

3229 IF X<7 THEN LG=1:RETURN
3229 REM FIND TARGET

3239 L=INSTR(1,Z2%,Z21%):2=-1

164

3249 Z$=LEFT$(Z%,L-1)+RIGHT$(Z$,

LEN(Z$) - (L+LEN(Z1%))) :REM REMOVE
OBJECT FROM Z$

3259 FOR N=g TO 1

3269 IF INSTR(1,2Z%,IC$(N)) >3 THE
N Z2%=ICH(N):Z=N:N=1

3279 NEXT N

3289 IF Z<>-1 THEN LG=1:RETURN
3299 FOR N=4 TO ?

3399 IF INSTR(1,Z%,IB$(N)) >3 THE
N Z2%=IB$(N) : Z=-N:N=9

3319 NEXT N

3329 IF Z=-1 THEN RF=1 ELSE LG=1
3339 RETURN

Withanewverb wemust obviously have a new action procedure
to perform the required task. The listing for THROW is given in
listing 8.8d.

Listing 8.8d

4099 RF=@:0K=0:0N X+1 GOSUB 4109
,4200,4300,4400,4700,4800,4900 ,4
500

4499 REM **¥THROW¥*

4599 IF PS(Y-5)<1 THEN RF=19:RET
URN

4529 IF Z>0 THEN IF LEFT$(Z2%,1)
<>RM$(FR, 1) THEN RF=6:RETURN
4539 IF Z2<@ THEN IF LEFT$(Z2%,1)
<>RM$(PR,d) THEN RF=6:RETURN
4549 IF Z1$<>"MAGIC DUST®" THEN 4
559

4545 MD=-

4550 OK=1:PS(Y-5)=PS(Y-5)-1

4569 IF Z>=@ THEN RM$(FR,1)="N":
MN=0 ELSE RM$(FR,d)="N"

4579 RETURN

45589 REM

4679 RF=13:PS(Y-5)=PS(Y-5)-1
4659 IF Z2%="MONSTER®" OR Z2%="TR

165

OLL" THEN RF=12
4699 RETURN

Finally for this section we add listing 8.9d to allow the Dragon to
make the appropriate responses.

Listing 8.9d

S319 FRINT“YOU THROW ";3;Z1%5" AT
THE *;Z22%, "HE EATS IT AND LAUGHS
» HA HA":RETURN
5329 PRINT*YOU THROW THE ";Z1%$;"
AT THE*®,22%;"“, DO YOU FEEL BETT
ER NOW?":FOR N=1 TO 20099:NEXT N:
PRINT"DON’T ANSWER THAT!":RETURN
5389 IF MD=-1 THEN FRINT"THE ";Z
2%; " DISAFFEARS!*"“:MD=g
S419 IF RM®(FR, 1)="M" THEN FRINT
"HIDEOUS MONSTER"

OK, try the game again, and try throwing objects other than
magic dust. Also, try throwing things at objects other than
monsters.

CRYSTALS AND SHIMMERING CURTAINS

Our final feature is the introduction of shimmering curtains of
impassable energy.

Some of the doorways in the cave are blocked by curtains of
shimmering energy. These can be neutralised by magic dust,
but you may need to save that for the monsters. Instead, try to
find a crystal, which will act as a key and totally remove the
curtain, leaving an open doorway.

No prizes by now for guessing that the first thing we do is add the
new words to the inventory. This is done in listing 8.2e.
Listing 8.2e

1239 FOR N=8 TO 19
1260 FOR N=¢ TO 2
1300 DATA GO, 92123, TAKE, S678%A,0P

166

EN, 4,EAT, 7689A,RUN, , FIGHT, , TELEP
ORT, , THROW, S6789A

1319 DATA NORTH,SOUTH,EAST,WEST,
DOOR, KEY, EMERALDS, FOOD, BATTERIES
,MAGIC DUST,CRYSTAL

1320 DATA TROLL,MONSTER,SHIMMERI
NG CURTAIN

I will leave it up to you todecide what you’re going to add in the
instructions and we will move straight on to the “create maze”
routine. In this section we must make the computer deposit
articles around the dungeon, which we do by adding listing 8.4e.

Listing 8 .4e

1459 IF CRYSTAL>9 THEN L$=L$+"S"
1475 IF 0%="S" THEN CRYSTAL=CRYS
TAL-1

1569 IF RND(@)>.6 THEN L%=L%+"C"
1629 IF 0%="C" THEN CRYSTAL=CRYS
TAL+1

1899 OB$="NKBN":L$="0DSW":H$="NT
MN*"

Enter listing 8.5e to describe these new occurences when we meet
them.

Listing 8.5¢

2939 IF RM$(PR,2)="C" THEN FRINT
TAB(?)35"A SHINY CRYSTAL"

2139 IF RM$(FR,N)="S" THEN FRINT
"THERE IS A SHIMMERING CURTAIN O

FENERGY TO THE "; IB$(N-2)

The next listing copes with the existence o f a new object that
could be the target of THROW'.

Listing 8.7¢

3259 FOR N=g TO 2

3269 IF INSTR(1,Z2%,IC$(N)) >0 THE
N Z2%=IC$(N) :Z=N:N=2

167

3299 FOR N=4 TO 190
3399 IF INSTR(1,2Z%,IB$(N))>9 THE
N Z2%=IB$(N):Z=-NiN=19g

With all these options for THROW the procedure to check thisis
getting alittle complicated, butdon’tworryabout this, we will
explain it all later. For the moment just add the next listing to
your program.

Listing 8.8¢

4529 IF Z>9 THEN IF LEFT$(Z22%,1)
<>RME(FR, 1) AND Z2#<>"SHIMMERING
CURTAIN" THEN RF=6:RETURN

4545 MD=-1:IF ZZ2%="SHIMMERING CU
RTAIN"” THEN 4690

4580 IF Z1$<>"CRYSTAL" THEN 4679
4590 IF Z2#%<>"SHIMMERING CURTAIN
" THEN 4679

4699 DR=@:FOR N=g TO 3

4619 IF DR=g THEN IF INSTR(1,Z%,
IB$(N)) >3 THEN DR=N+2:N=3

4620 NEXT N

46390 IF DR=9 THEN RF=14:RETURN
4649 IF RM$(FR,DR}<>"S" THEN RF=
1S:RETURN

4659 RM$(FPR,DR)="0":R=FR+FNR(DR)
:DR=FND(DR) :RM$(R,DR)="0"

4660 OK=1:FS(Y-5)=PS(Y-5)-1:RETU
RN

We now add just one more response to section 9 of the program
and that’s it.

Listing 8.9

5349 PRINT"THERE IS NO SHIMMERIN
G CURTAIN TO THE ";IB$(DR-2):RE
TURN

We hopeyou enjoy the challenge of surviving and beating this final
version of our adventure game.

CHAPTER 9

Adventures - A Detailed Look

The previous chapter explained in a general way how the game
worked by explaining what each routine did. In this chapter we
will take a closer look at how each of the subroutines works, and
by the end of the chapter you should be well prepared for
inventing your own features to the game, or even for writing your
own game completely.

Before we get into the routines themselves, we shall have to
look at the DATA, or knowledge, upon which they work. This is
stored in theinventories, which represent the computer’s
knowledge of the world of the dungeons.

The inventories are made up of three string arrays IAS, [B$ and
ICS. IA$ is a two DIMensional array of strings. In one DIMension is
a list of all the verbs which the program will recognise, and in
each corresponding element in the other DIMension there is a list
of numbers. This can be seen in figure 9.1. The numbers in 1A$
are actually the subscript numbers of the words in IBS. So if we
take the verb GO, for example, it has an associated list of numbers
0123, and if we look at IBS, to IB$(3) we see that they contain the
words NORTH, SOUTH, EAST and WEST. You may be wondering
what the letter A is doing in the list of numbers. In fact we are
using it to represent the number 10, so that the computer doesn’t
get mixed up over 10 being 1 and 0. We will see how this works
later.

168

169

Figure 9.1 1AS$ Array

0 1
0 GO 0123
1 TAKE 56789A
2 OPEN 4
3 EAT 56789A
4 RUN
5 FIGHT
6 TELEPORT
7 THROW 56789A

Figure 9.2 1B$ Array

0 NORTH
1 SOUTH
2 EAST
3 WEST
4 DOOR
5 KEY
6 EMERALDS
7/ FOOD
8 BATTERIES
9 MAGICDUST
10 CRYSTAL

By looking at these arrays we can see that the player may GO to
the NORTH, SOUTH, EAST or WEST, but he may only OPEN a
DOOR. He may EAT a whole range of objects (although anything
but food will choke him, as we will see later).

When we look at the routine that checks the legality of a
player’s INPUT we will see how it makes use of the information
being stored in this way. The third array ICS is very similar to [BS.
It contains a list of objects, but these are objects which cannotbe
refered to directly by any of the verbs in 1A$. They are referred to
indirectly and, in our game, by only one verb — THROW. IC$ is
shown in figure9.3.

170
Figure 9.3 IC$ Array

1 TROLL
2 MONSTER
3 SHIMMERING CURTAIN

Another “data structure” (to use the lingo) which we must look at
before going on to examine the various subroutines is the array
which stores the information about the maze itself. The game
assumes a maze of 36 rooms/caves/dungeons which are arranged
in a 6 x 6 block. If we think about what we need to know about
each room, we find that there are six essential pieces of
information.

1. Is there a “friendly” object?

2. Is there a “hostile” object?

3. What kind of doorway (if any) is to the NORTH?
4. What kind of doorway (if any) is to the SOUTH?
5. What kind of doorway (if any) is to the EAST?
6. What kind of doorway (if any) is to the WEST?

This means that we need a 36 x 6 array, and you can see the
statement DIM RM$(35,5) in line 70 of the Control Program. With
this array we can think of each room as having a number between
0 and 35, and to see if room number 4 (say) has a friendly object
(e.g. a key) we would look at RM$(3,0) and see if it is equal to K.
Now all we need is a convention for representing the various
objects, and the convention we have chosen is as follows:

In RM$(n,0) - Friendly objects

K = KEY
E = EMERALD CROWN
F = FOOD

B = BATTERIES
M = MAGIC DUST
C = CRYSTAL

In RM$M(n,1) - Hostile objects
T = TROLL
M = MONSTER

171

In RM$(n.2) to RM$(n.S) — Entranceways

O = OPEN DOORWAY

D = LOCKED DOORWAY

S = SHIMMERING CURTAIN

W = WALL
The array RJ$ is simply filled with adjectives whichare then
chosen at random to describe a room the player has just entered.
The last array we use in the game is the numeric array PS4). This
is used to store each object the player has on his person.

PS(®) = Number of Keys

PS(1) = Number of Emerald Crowns
PS2) = Number of Food Packs

PS(3) = Number of Piles of Magic Dust
PS(+) = Number of Crystals

Now that we know how the information is stored we can look at
how the various subroutines make use of it.

The first subroutine assigns the inventories, that is, it reads all
the verbs, etc., from the DATA statements in lines 1300 to 1320
into the arrays IAS, IBS, IC$and RMS$. This should be easy to follow
as it is very similar to the way DATA was read in the sections of
our arcade game which defined graphics characters.

The next section, the instructions, is also fairly self
explanatory. We have already looked at PRINT statements and
FORNEXT loops, so enough said!

By contrast, the next section, creating the maze, is probably
the most complicated routine in the program. Don’t turn over,
though, it’s still quite easy to follow what's going on. It begins by
choosing a random position in the maze at which to put the
Crown of Emeralds and another random position for the player’s
starting point. These positions are stored in the variables CE and
PR respectively. The next thing it does is to “walk™ from the
player’s room to the Crown Room, hanging various types of doors
and depositing various objects on the way, in such a way as to
ensure a feasible path exists through the maze.

It does this by first calling at random either a routine to deposit
an object or a routine to deposit a hazard. These routines make a

172

random choice between the various tvpes of object or hazard, and
sometimes cven deposit a N (which stands for “Nothing”). The
routine which deposits objects keeps a record of how many of
each tyvpe it has deposited. The number of kevs deposited, for
example, is stored in the variable KEY

The next thing the routine does is to choose what kind of door
to put up. The choice available depends on what objects have
been deposited so far. For example, if KEY is equal to one or
more the character D (for locked door) will be added to the list of
possibilities (stored in L$) - this occurs in line 1440, and the
actual choice of door is made in line 1460. Ifa locked door is
chosen we must assume that the player will use up a key in
opening the door (remember they alwavs get stuck or broken)
and so the routine takes one of f the variable KEY

Well, now that the routine knows what type of (door or
shimmering curtain or whatever) it is going to put up, it needs to
figure out where to put it. This is done by calculating the
difference between the position of the Crown Room (CE’ and the
current position of the computer on its “walk” (X). This
difference is stored in the variable Y. Bearing in mind that we are
using a 6 x 6 grid of rooms, it should be clear thatif v is bigger
than six then the Crown Room must be in a row of rooms below
the computer’s current position. Similarly, if Y is less than minus
six the Crown Room must be above us somewhere. A look at
figure 9.4 should make this clear. A similar bit of reasoning tells
us whether the Crown Room is to the left or right once we are on
the same row.

Figure 9.4 The Maze

o 1 2 3 4 5
6 7 8 9 10 11
12 13 14 15 16 17
20 19 20 21 22 23
24 25 26 27 28 29
30 31 32 33 34 35

Once the direction has been decided upon the computer puts the
chosen door on the chosen wall, ‘“‘spirits” itself through the door

173

into the next room and — very important — puts the same type of
door on the other side. (It would be a bit silly to have a door that
was locked from one side and open from the other.) You can see
all this going on in lines 1480 and 1540.

Once the Crown Room has been reached, Crown of Emeralds
and a monster guard are deposited in it and the computer then
goes through the entire maze room by room, putting up random
doorways wherever it finds blank walls (W) and depositing
random objects and hazards in empty rooms. This happens in
lines 1800 to 1990 — note lines 1840 to 1870 preventdoors to the
outside world from being put up.

Well, you can see that building the maze is quite a job, and this
fact is reflected in the twelve seconds which it takes the computer
(which is no slouch in these matters) to complete the task. It is so
unusual in games-type applications to find something that takes
the the computer so long to do, that the player might be forgiven
for thinking that the computer has “hung up” on him. That is
why the message WAIT is PRINTed at the beginning of the
routine.

Having created the maze, the control program now moves into
the main loop, which will go round until the game is either won
or lost. The first section in this loop calls the routine to describe
the room the player is currently in. If the player has just entered
the room, as opposed to still being there from the last time
around, this routine will also give a short description of the room
itself. This condition is “flagged” by the variable NR (for New
Room). Ifit is 1 the routine will describe the room, butif it is 0,
it will only describe the room’s contents. The routine is in lines
2000 to 2190, and the first two lines are the ones which describe a
new room. This is done by choosing two adjectives at random
from the array AJ$ and assigning them to the string variables A$
and BS, thenincludingthese in the PRINT statement in line 2010.
The word CAVE or PASSAGE is also chosen randomly.

If you look at line 270 in the control program you will see the
statement ON NR+1 GOSUB 2020, 2000. This is how the program
decides whether or not to describe the room. The ON - GOSUB
statement looks at the number, or expression, following the word
ON, and if it is 1, it GOSUBs to the first line number after the word
GOSUB, if itis 2, it GOSUBs to the second line number, and so on.

174

In this case, this means that if NR is 1, then NR+1 will be 2, and it
will GOSUB to line 2000, and describe the room. If NR is 0,
however, NR+ 1 will be 1, and so the control program will GOSUB
to line 2020, thereby missing out part of the subroutine which
describes the room, and going directly to the section which lists
the objects present in the room.

This part of the routine is quite simple. It tests RM$(PR.0), i.e.
the “friendly object” element of the room the player is in for each
type of object that could be there, and if it finds one it PRINTS it
out. Then it does exactly the same for RM$(PR.1) — the “hostile”
object element. Note the use of the TAB function to line them up
neatly. Just to make the descriptiona bit more interesting, we
have added a selection of descriptions of keys — rusty, large,
golden and wooden, and these are chosen at random IF RM$(PR.0)
= ~K*, indicating the presence of a KEY. Finally the routine
checks the four directions NORTH, SOUTH, EAST and WEST
(elements 2 to 5 in RM$ second dimension) and PRINTs out
whether a door (it doesn’t specify whether it is locked or not) or a
shimmering curtain is there.

Once the player has been told of his situation, it is time for him
to tell the computer what he wants to do. You will notice that
before the player makes his INPUT, there are two PRINT
statements. The firstof these PRINTSs a space at the last position
on the screen, causing the screen to scroll up one line, which
makes space for the user to enter his INPUT. The second PRINT
statement merely serves to move the PRINT position (i.e. the
place where the next item will be PRINTed) to the beginning of
the last but one line on the screen, which is where we want the
player’s INPUT to start. Then there is the INPUT statement itself —
INPUT U$. This makes the computer wait for the player to type in
his instructions, which are placed into the string variable US$.

The next routine checks the player’s instruction to see if they
make sense. It first makes a quick check to see of the player has
given up and typed QUIT, since if he has there is no point in going
any further. Look at line 3000. There is a word there that you
probably haven’t seen before — INSTR. It stands for ‘in string” and
it is one of many functions the Dragon has for handling strings.
What this does is to examine the strings in U$, starting at the first

175

character (because of the I inside the brackets) and see if the
string QUIT is to be found in it. The result of this function is a
number, not a string, and the number is the position i U$ of the
string QUIT. So if the player typed “I « !''> QUIT", in a fit of
frustration, the INSTR function would produce the number 6. If
the “target string” (QUIT in this case) is not in the “object string”
(U$ in this case) then INSTR returns the number 0. We don’t
really care where the word QUIT is within US, only if it is there at
all, so we just ask if INSTR returns a number greater than 0, and if
so we set the QUIT flag, Q, to 1, and RETURN. When the legal
check routine returns to the control program the QUIT flag is
tested, and if it has been set, the program jumps to the END.

Usually the player will not have quit, and so the checking
routine has to flex its muscles a little harder. The routine finds
words within U$ by looking for spaces, so to avoid any confusion
the first thing it does is to remove any leading or trailing spaces
from US. (eg. “ GONORTH ” would be trimmed down to “GO
NORTH™. This is done by the use of another three string functions
- LEFTS$, RIGHT$ and LEN. LEFTS takes the form LEFT$(X$,N) and
returns a string which consists of the first N characters of the
string X$. RIGHTS takes the form RIGHT$(X$,N) and returns a
string which consists of the last N characters of the string Xs. For
the sake of completeness you may as well meet their sister MIDS,
which takes the form MID$(X$,N,M) and returns a string
consisting of M consecutive characters from X§, starting at
character number N. Brother LEN takes the form LEN(X$), and
does not return a string, but returns a number equal to the
number of characters in X$. With this information you should be
able to see how lines 3010 and 3020 strip off the leading and
trailing spaces.

The next thing the routine does is to split the player’s INPUT
(U$) into two strings. The first word (which we assume to be the
verb) goes into W1$, and the rest of the string, if there is any
more, goes into 2$. Then the routine loops through each “verb”
element of IR$ checking it against W1$, and as soon as it finds a
match, it stores the verb’s subscript number in the variable X and
exits the loop. Before entering the loop X is set to -1, so if it is
still equal to —1 when the loop has finished, it means that W1$ was

176

not one of the allowed verbs, so we set RF, used to choose an
appropriate response to the player’s input, and then RETURN.

If X is not equal to ~1 we know that we must have found a legal
verb, so the next line tests to see if it was one of the verbs RUN,
FIGHT, or TELEPORT. Since these are different from the other
verbs in that they do not require any noun to make sense, we can
just set the flag LG to tell the control program that the player’s
INPUT was legal, and RETURN. Otherwise, we will need to check
that the rest of the player’s INPUT contains a word to which that
verb can refer. First, we assign L$ as the list of numbers from IR$
which correspond to the verb we have found. Then we set up a
loop which changes each of these numbers in turnfroma
“character” into a number using the function VAL, and then uses
INSTR again to see if the object in IB$, pointed to by that number,
is in the player’s INPUT. If it is, we store the word’s subscript
number in Y, store the word itself in 21$. and exit the loop. We
set Y to —1 before entering the loop so that on exit we can test it to
see if we found a legal word. You can see this in lines 3160 to
3210. You may wonder what the “&H" is for in line 3180. This is
so the computer will interpret “A” as “10” when the string is
turned into a number with VAL. “&H" stands for Hexadecimal, or
Hex for short. It is a different way of counting used in
computing, which counts in 16s instead of 10s, and uses the
letters A,B,C,D,E and F to represent the numbers 10
,11,12,13,14 and 15. MID$(L$,N,1) will provide a character which
is either 0 -9, or A, and by putting “&H"+ in front of it we will
build a string that reads “&H3", or “&HA", or whatever the number
was. You can “add” strings together like this, but you cannot use
other mathematical signs with strings, such as “~” or “*”,

For most situations, this will be as far as the inventory search
goes. Either v will still be equal to -1, in which case RF will be set
appropriately, or the player’s INPUT must contain a legal verb/
word combination. There is one verb, however, which requires
further testing, and that is THROW. If the verb in the player’s
INPUT is throw, then X will be equal to 7, and this is tested for
before setting LG and RETURNing. This is because the verb
THROW needs two other words to make sense. So, if we have
found a legal word combination we must now search the

177

remainder of the player’s INPUT for the name of an object at
which he can throw things. At this point z$ contains the player’s
INPUT minus the first word — the verb. If we search it as it stands
we will find the name of the object which is being thrown and
conclude that there is an object in the INPUT which could be
thrown at. For example, if the player’s INPUT is “THROW KEY” (a
daft thing to do but perfectly legal) then KEY would be correctly
identified as the object being thrown, but incorrectly identified as
the object being thrown at, when in fact no target has been
specified at all and the INPUT is illegal! We get round this by
removing the word KEY from z$ before doing the search for a
target. This happens in lines 3230 and 3240.

There are two arrays containing objects which can be thrown
at. ICS is the one most likely to contain the word in the player’s
INPUT as this is the array with the words TROLL, MONSTER, and
SHIMMERING CURTAIN — the objects at which it is sensible to
throw things. For this reason, we search IC$ first. Z is used to
store the subscript number of the word (if one is found). If a
word is not found (Z equal to —1) we then know that we must
search IB$ as well. We search IB$ from subscript 4 onwards. (It
doesn’t make sense to throw something at a NORTH.) If we find a
word, instead of storing its subscript number we store its
subscript number multiplied by —1. (Still in Z though). This is so
that another routine will know whether the object was found 1B§
or IC$. Again, if no word is found, the response flag is set
accordingly, otherwise the LG flag is set. In either case there is no
more searching to be done so we RETURN.

If the INPUT was not legal, LG will be equal to 0 and the control
program will move straight on to the response section of the
game. If LG was set to 1 then the program needs to look at the
INPUT in the context of the player’s current situation and carry
out the player’s instructions, if possible, since a legal INPUT (for
example “TAKE THE KEY™), may still be invalid, if there is no key
in the room to take. There are clearly many possible situations
that need to be tested for by this routine, so we have split it up
into smaller routines, each of which has a much smaller number
of possibilities to look for. Which of these subroutines is called
depends on which verb has been used. The main routine first

178

resets a flag called OK to 0, and then calls the appropriate
subroutine. If all is well this subroutine will set OK to 1, as well as
actually carrying out the player’s instructions. The first routine
then checks to see if all is OK and sets the response flag
accordingly. Now we will look at what each of these subroutines
does.

The first one is called if the verb was GO. Like the subroutines
for TAKE, OPEN and EAT. the first line tests for the presence of a
monster or troll, because if one of these beasts is present, he
won’t let you go anywhere, open a door, or take or eat anything
until you have dealt with him. Assuming there is no beasty
present, the routine checks to see if a direction was specificd. If
not the response flag is set accordingly and we RETURN.
Otherwise, we set a variable DR for direction and then look in
RMS to see if there is an open door in the specified direction. If
there is, we update PR and set the new room flag, otherwise we
set the response flag accordingly. In either case we RETURN. PR
holds the player’s position within the maze ~ his room number.
We update it using a function defined in the initialisation section
of the program. We use it many times in the program and it’s
much easier to say I'NR(DR) than to write out the whole
expression every time.

The next subroutine is called when the verb is TAKE. It tests
whether the object is actually there for the taking, and also tests
whether the object in question is a set of BATTERIES, resetting
TIMER if it is. Then it updates the possessions array PS() and
RETURNS. TIMER is a special variable in the Dragon which is
constantly being incremented at a rate of 50 per second. If you set
it to 0 and then read it later by assigning it to a variable, you can
work out how much time has elapsed since you set it.

The next subroutine is OPEN. It first checks that the player has
a key and, if so, goes on to check that a direction was specified
(we must know which door he wants to open) and that the door is
locked. If all is well then the possession array is updated (i.e. he
loses a key), a flag is set (K) so that the response routine will tell
the player that he has lost a key, and RM$ is updated, then we
RETURN. (Remember that we need to update two rooms when the
state of a door changes, and again we use our defined functions.)

179

The subroutine EAT checks that the player actually has
whatever it is he is trying to eat. Then it checks that he is eating
food. If not, RF is set to make him choke, otherwise his strength
is replenished, and his possessions array updated, before
RETURNing.

The RUN routine finds an open door if there is one and puts the
player the other side of it, updating PR at the same time. If
however there is nothing torun from, or no open door to run
through, FR is set.

The FIGHT routine checks that there is something to fight. If so
it kills it, i.e. removes it from RMS$ and resets the monster flag
MN. It also decreases the player’s strength by arandom amount,
and then RETURNSs. TELEPORT simply assigns arandom number
between 0 and 35 to PR and decreases the strengthvariable by
200 (teleporting is a strenuous activity).

The last subroutine is THROW, and it is the most complex of
these subroutines. It begins by checking that the player has the
object he is trying to throw. It then tests to see that the specified
target is actually in the room. If either of these tests prove
negative, RF is set and we RETURN. If we get past these tests we
then find out whether the player is throwing MAGIC DUST, a
CRYSTAL, or some other object. This information is in Z1$, as a
result of the second part of the inventory search. If it is MAGIC
DUST then we disappear the target. (Such is the power of MAGIC
DUST.) If the target was a shimmering curtain, however, we must
first check that the direction was specifed. If the object thrown
was a CRYSTAL, then unless the target was a SHIMMERING
CURTAIN it will have no effect, as is true of any other object
THROWN. All we want to know is whether the object was thrown
at a monster or an inanimate object, so that we can set RF to
either make the monster laugh or the computer pokefunat the
player.

If the last two sections dealt with the “brains” of the program,
this section deals with the “mouth”. This is the response routine,
and although it is the longest routine in the program, it is also one
of the simplest. All the work has already been done to decide
what the correct response to the player’s INPUT should be. There
are 20 basic responses and the actual response is chosen by the

180

setting of RF (the response flag) to a number between 1 and 20.
All the response routine now has to do is make use of the ON .
GOSUB statement to call a small subroutine which PRINTSs the
correct response. A full list of responses and their RF numbers is
given in Appendix Two.

After PRINTing the response, the routine checks if the player
now has the Crown of Emeralds and, if so, the WON flag is set and
we RETURN. The LOST flag is also checked at this point, and if it
is set, we also RETURN. If the game is neither WON nor LOST, the
response routine examines the strength variable ST and makes an
appropriate comment on the state of the player’s health. Then it
reads TIMER, and if time is running out, it PRINTs a warning to
that effect.

The last three routines are only called at the end of a game.The
first two simply PRINT out a message to commiserate or
congratulate the player, depending on whether he won or lost.
After this the control program invites the player to play again,
and if he accepts, it calls our final routine, which resets the WON
and LOST flags, and the possessions array. The control program
then loops back to section 4 of the program, which builds another
maze, and the whole thing starts over again. If the player declines
to play again the control program moves on to its last statement —
END.

CHAPTER 10

Some Parting Remarks.

Well by now you’ve probably learnt quite a lot about writing and
altering the sort of games we have discussed in this book. There
should be nothing left to hold you back from writing your own
games now. You are now in position to write your own BASIC
games and save your hard-earned pennies for only the best, top-
quality, machine code, commercial games. Before we leave this
introductory book behind though it is probably a good idea to
havea look at one of the most important and much used BASIC
functions in game writing. Random numbers have been used
throughout this book and we have never quite got round to
looking at them in detail. They are used a lot because they can
help you produce unexpected events, and that is far more
interesting than having a game that does exactly the same thing
all the time. Without random numbers the aliens would always
appear in the same place at the top of the screen and the maze in
the adventure would be totally predictable. Of course we could
write so complex a program that we wouldn’t know which one of
the many partsof the program we were playingagainst but this
would take up a lot of memory and, more importantly, a lot of
effort from the people writing the game.

The BASIC word associated with random numbers is RND with
a parameter to suitably modify the range of the output. RND(I)
gives us a random number between 0and 1 and although it can
give a value of 0 it cannot reach 1 (the highest it will ever get is
about 0.99999999). Look at the range of numbers with this little
program:

100 PRINT RND(1)
110 GOTO 100

You should see many different numbers between 0 and 1 with no
discernablepattern. Actually if you carry on long enough the
pattern would repeat after 65536 numbers. This is because RND
is really only a pseudo-random function. The computer actually

181

182

calculates the next random number from the current one by
adding a large prime non-divisor of 2 1 32 then reducing this
modulo 2 1 32 to give a number between @ and 65536. The
random number returned is either this number interpreted in
two’s complement notation for an integer (i.e. for RND with a
parameter greater than 1) or this number divided by 65536 for
RND(1), so it’s all very rational really!!

Here is a short program to simulate the throwing of a die:

10 REM PROGRAM TO THROW A DIE
20 PRINT RND(6)
30 GOTO 20

The above program will give random numbers in the range 1 to 6.
Of course if we wanted to simulate twodice being thrown we
would have to produce numbers in the range 2 to 12 but we
would work it out by calculating two numbers in the range 1 10 6
and adding them together, not by producing a new function call
along the lines of INT (RND(1 1)+ 1.)

Well, that’s enough about random numbers. If you have spent
enough time playing with (and altering) the games in this book
you will be feeling ready to use BASIC in the development of your
own games and adventures. Who knows, you may even decide to
start writing programs to keep track of your bank balance and
such like. Whatever you decide to do remember to keep clearly in
mind the overall job. Always split your task up into smaller sub-
tasks and never try to solve all the details of one sub-task before
you even have an idea what the rest of the tasks are going to be. If
you approach programming, or even writing a book, in this way,
you will find that you can easily get through even the longest of
jobs. This sort of approach is known as structured programming
and although BASIC is not intrinsically a structured language we
can still approach the building of a program in an orderly fashion.
It would almost certainly be worth your while getting a book on
structured BASIC programming to help you to expand your
knowledge of working BASIC. Remember to go for one that has
plenty of programming examples and if possible one with
exercises that you can work through. If you got on well using the
BASIC blocks in this book then maybe you should consider a
career in computing!!

APPENDIX ONE

Arcade Game Variables

ALIENS
AMMO
AS

AX
AY
BX
BY
CD

CH

D

DD

F

FIN
FUEL
GM

HIT

PX
ry

RN
SCORE

Number of aliens left.

Numberofbullets, etc., left.

ASCII code of character to be PUT by PUT STRING
routine.

Current x co-ordinate of alien.

Currenty co-ordinate of alien.

x co-ordinate of bomb/fireball.

y co-ordinate of bomb/fireball.

Value to be POKEd to the screen in character
definition routine.

Number of character being defined in any batch.
Flag to cnable downward movementofplayer.
Flag to indicate dead alien.

Flag to indicate firing game.

Flagto indicate end of game situation.
Amountoffuel left.

Numberof games played.

Flag toindicate hyperdrive enabled.

Flag to indicate alien hit, or player crashed.
Flag to indicate shot hasbeen fired.

Flag to indicate lef t movement enabled.
Number of characters to bedefinedin a given
batch.

Inverse flag. If set (1) reverses foreground/
background.

Number of aliens that have got past.

Page number offirst visiblegraphics page in
characterdefinition routine.

Current x co-ordinate of player.

Current y co-ordinate of player.

Control variable in background loop.

Flag to indicate right movement emabled.
Row number of character being defined.
Player’s score.

183

184

ST

U
X2
XA
XG

Xr
XS
Y
Y2
YG
YP
YS
A$
F$
P$

ARRAYS
A1)
AB(1)
B(1)

c()

N(D)

PB(1)
T(1),UK(1)

Firstaddress to be POKEd in character definition
routine.

Flag toindicate up movement enabled.

X co-ordinate of background object.

Old x co-ordinate of alien.

X co-ordinate of character tobe GOTin
PUTSTRING.

Old x co-ordinate of player.

X co-ordinate of first character instringto be PUT.
Control variablein character definition loop.

Y co-ordinate of background object.

Y co-ordinate of character to be GOTin PUT STRING.
Old y co-ordinate of player.

Y co-ordinate of firstcharacterinstring to be PUT.
Used with INKEYS$ to wait for player response.
PLAYed in firing routine.

String passed to PUT STRING for PUTting on screen.

Stores alien character.

Stores alien background.

Stores player character.

Storesbomb/fireball character.

Used for PUTting alphanumerics on to the screen.
(And for background inbomb routine.)

Stores player background.
Storebackgroundobjectcharacters.

APPENDIX TWO

Adventure Game Variables

FLAGS
K

LD
LOST
MD
MN

Sectto-1when a key is used up (in opening a door).
Set to 1 to indicate presences of alocked door.
Setto 1 when player dies!

Setto-1 when magic dustis thrown.

Setto 1 to indicate presence of monsterortroll.

185

NR Set to 1 when player changes room.

0K Set to 1 when program successfully performs
player’s instructions.

Q Quit flag. Setto 1 when player quits.

RF Responseflag. Set to a number between 1 and 20 to
indicate which of 20 responses is to be used in
response routine.

WON Set to 1 when player takes Crown of Emeralds

NUMERIC VARIABLES

CRYSTAL Used in computer “walk” through maze. While
greater than zeroit indicates that more crystals than
shimmering curtains have been placed in the maze.

CE Room number of Crown of Emeralds.

DR Indicatedirectionof doorway beingreferred to.
2toSare NORTH,SOUTH, EAST and WEST.

KEY Used on maze “walk”. While greater than zero it
indicates thatmorekeysthan lockeddoors have
been placed in the maze.

L Temporary store of lengths of various strings.

MN Control variables for various loops.

PR Player’s current room number.

R Temporary store for random numbers.

ST Strength level. Starts at 1000. Player dies of
exhaustion atzero.

™ Time passed (in minutes)sincegame started or
since player lastacquired new batteries.

\Y Control variable forloop in verb inventory search.

X,Y,Z Used in inventory searches to store subscript
numbersof words found. X and Y arealsousedin
building themaze. X stores the computer’s room
number during the “walk™. Y stores the difference.

STRING VARIABLES

AS$.BS Storeadjectives from AJ$(4,1) for room
description. A$is also used with INKEYS$ to wait for
the player to read the instructions.

HS$ Strings of hazards in maze building routine.

LS Temporary store for various strings.

0s$ Stores chosen object, hazard, or door to be placed.

186

OB$
us
3

Z1$
723

ARRAYS
PS(4)

IA%(7,1)

IB$(10)
1C$(2)

RM$(35,5)

AJS(4,1)

RF

e I R e

String of objects in maze building routine.
Player’s INPUT.

Player’s INPUT minus verb. (And minus Zi$ in
inventorysearchpartthree.)
Objectofverbinplayer’s INPUT.
Indirectobjectof verb “throw”.

Numeric array. Stores quantities of each itemin
player’s possession.

List oflegal verbs, and pointers to objects to which
verbs may refer directly.

Listof objects to which verbs may referdirectly.
Listofobjects to which the verb THROW may refer
indirectly.

Room array. Storesinformationabout presence of
friendly objects, hostile objects and doorways, for
each roominthe maze.

Listof adjectives, for room description.

RESPONSES

WHAT?!

IDONOTKNOWTHEVERB...

YOU CANNOT ... THE...

YOU CANNOT GO... .

THE DOORISLOCKED.
ISEENO...HERE.

BUT YOUDONOTHAVEAKEY.

THERE ISNO LOCKED DOOR TO OPEN
HERE.

Not used. (Reserved for future use).
YOUDONOTHAVETHE...
YOUEATTHE... YOU CHOKE TODEATH!
YOUTHROW...ATTHE.. . HEEATSIT
AND LAUGHS. HAHA.
YOUTHROW...ATTHE...,DOYOUFEEL
BETTERNOW?DON'TANSWERTHAT!
WHICH DIRECTION?

THERE IS NO SHIMMERING CURTAIN TO
THE...

20

YOU .. .(Echo player’s INPUT).

187

YOUTRYTO...BUT YOUARE ATTACKED

BYTHE. ..
YOURUN.

YOU FIGHT THE BEAST, YOU STAVE IN
HIS SKULL, HECRUMBLES TODUST.
YOUCANNOT RUN-THE ENTRANCES

ARECLOSED.

APPENDIX THREE

ASCII Character Codes

Character

space
I

+

>
—(minussign)

DN R WN =S

©

TR IOMEOOOmER VY AT

188

Code Character

b
S=\NTNIXg<C Y RON0Z

=l
3}
tm—.rvn_ng‘ma\]\

103

Code Character

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125 }
126 1
127 .

~N<Xg<ES~-m®wnNO0DODg—RFTTDT

96 —127

appear onscreenas
inverse characters.

128 10 255 are block graphic characters.

APPENDIX FOUR

Decimal/Binary Conversion Table

DECIMAL BINARY

0 00000000
1 00000001
2 00000010
3 00000011
4 00000100

ol RN I N 1

00000101
00000110
00000111
00001000
00001001

00001010
00001011
00001100
00001101
00001110

DECIMAL BINARY

15

00001111
00010000
00010001
00010010
00010011
00010100
00010101
00010110
00010111
00011000
00011001
00011010
00011011
00011100
00011101
00011110
00011111
00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
00101100
00101101
00101110
00101111
00110000
00110001
00110010
00110011
00110100
00110101

00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111
01000000
01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000
01011001
01011010
01011011
01011100

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

130
131

189

01011101
01011110
01011111
01100000
01100001
01100010
01100011
01100100
01100101
01100110
01100111
01101000
01101001
01101010
01101011
01101100
01101101
01101110
01101111
01110000
01110001
01110010
01110011
01110100
01110101
01110110
01110111
01111000
01111001
01111010
01111011
01111100
01111101
01111110
01111111
10000000
10000001
10000010
10000011

190

LCECIMAL BINARY

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

10000100
10000101
10000110
10000111
10001000
10001001
10001010
10001011
10001100
10001101
10001110
10001111
10010000
10010001
10010010
10010011
10010100
10010101
10010110
10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000
10100001
10100010
10100011
10100100
10100101
10100110
10100111
10101000
10101001
10101010

10101011

10101100
10101101

10101110
10101111
10110000
10110001
10110010
10110011

10110100
10110101

10110110
10110111

10111000
10111001

10111010
10111011

10111100
10111101

10111110
10111111

11000000
11000001
11000010
11000011
11000100
11000101

11000110
11000111
11001000
11001001
11001010
11001011
11001100
11001101

11001110
11001111
11010000
11010001

11010010
11010011
11010100
11010101
11010110
11010111
11011000
11011001
11011010
11011011
11011100
11011101
11011110
11011111
11100000
11100001
11100010
11100011
11100100
11100101
11100110
11100111
11101000
11101001
11101010
11101011
11101100
11101101
11101110
11101111
11110000
11110001
11110010
11110011
11110100
11110101
11110110
11110111
11111000

DECIMAL BINARY

249
250
251
252
253
254
255

11111001
11111010
11111011
11111100
11111101
11111110
I

191

Robert Erskine & Humphrey Walwyn with Paul Staniey and Michael Bews
Bumper Book of Programs for the Sinclair ZX Spectrum £495

Robert Erskine & Humphrey Walwyn with Pauf Stanley and Michael Bews
Bumper Book of Programs for the BBC Micro {495

Robert Erskine & Humphrey Walwyn with Paul Stanley and Michael Bews
Bumper Book of Progams for the Dragon 32 £4.95

Robert Erskine & Humphrey Walwyn with Paul Stanley and Michael Bews
Bumper Book of Programs for the Oric 1 £495

lan Adamson
The Definitive Companion to the Oric 1 £495

Geoff Wheelwrnight
The Definitive Companion to the BBC Micro f495

Jean Frost
Instant Arcade Games for the Sinclair ZX Spectrum £3.95

Jean Frost
Instant Arcade Games for the BBC Micro £3.95

Jean Frost
Instant Arcade Games for the Dragon 32 £3.95

J J. Clessa
Micropuzzles £2.95

Send to Pan Books (CS Department), PO Box 40. Basingstoke. Hants
Piease enclose remittance 10 the value of the cover price plus

35p for the first book plus 15p per copy for each additional book ordered
10 @ maximum charge of £1 25 to cover postage and packing

Applicable only in the UK

While every effort 1s made to keep prices low, it 1s sometimes

necessary 10 increase prices at short nonce Pan Books reserve

the night to show on covers and charge new retait prices which

may differ from those advertised in the text or efsewhere

INSTANT INVADERS ... INSTANT
LASERS ... INSTANT SPACESHIPS
... INSTANT GAMES ... INSTANT
BASIC!

For the newcomer to computing, Jean
Frost’s Instant Arcade Games will be
nothing short of a revelation.

With little or no knowledge of BASIC, you
can still take a suite of ‘skeleton’ programs
and create your own arsenal of dynamic
and totally unique arcade games.

This is not just another collection of
listings, but a library of software that also
serves as one of the most accessible
introductions to structured programming
ever written.

For Dragon users who already write their
own software, Instant Arcade Games offers
an invaluable library of imaginative
subroutines and user-defined graphics to
enhance the efficency and visual impact of
their games programs.

Spaceships, motherships, firing and scoring
routines — the book is packed with ready-
made modules that can be slotted into
virtually any kind of arcade-style program.

0330282719

	1
	lc-p001
	lc-p002
	lc-p003
	lc-p004
	lc-p005
	lc-p006
	lc-p007
	lc-p008
	lc-p009
	lc-p010
	lc-p011
	lc-p012
	lc-p013
	lc-p014
	lc-p015
	lc-p016
	lc-p017
	lc-p018
	lc-p019
	lc-p020
	lc-p021
	lc-p022
	lc-p023
	lc-p024
	lc-p025
	lc-p026
	lc-p027
	lc-p028
	lc-p029
	lc-p030
	lc-p031
	lc-p032
	lc-p033
	lc-p034
	lc-p035
	lc-p036
	lc-p037
	lc-p038
	lc-p039
	lc-p040
	lc-p041
	lc-p042
	lc-p043
	lc-p044
	lc-p045
	lc-p046
	lc-p047
	lc-p048
	lc-p049
	lc-p050
	lc-p051
	lc-p052
	lc-p053
	lc-p054
	lc-p055
	lc-p056
	lc-p057
	lc-p058
	lc-p059
	lc-p060
	lc-p061
	lc-p062
	lc-p063
	lc-p064
	lc-p065
	lc-p066
	lc-p067
	lc-p068
	lc-p069
	lc-p070
	lc-p071
	lc-p072
	lc-p073
	lc-p074
	lc-p075
	lc-p076
	lc-p077
	lc-p078
	lc-p079
	lc-p080
	lc-p081
	lc-p082
	lc-p083
	lc-p084
	lc-p085
	lc-p086
	lc-p087
	lc-p088
	lc-p089
	lc-p090
	lc-p091
	lc-p092
	lc-p093
	lc-p094
	lc-p095
	lc-p096
	lc-p097
	lc-p098
	lc-p099
	lc-p100
	lc-p101
	lc-p102
	lc-p103
	lc-p104
	lc-p105
	lc-p106
	lc-p107
	lc-p108
	lc-p109
	lc-p110
	lc-p111
	lc-p112
	lc-p113
	lc-p114
	lc-p115
	lc-p116
	lc-p117
	lc-p118
	lc-p119
	lc-p120
	lc-p121
	lc-p122
	lc-p123
	lc-p124
	lc-p125
	lc-p126
	lc-p127
	lc-p128
	lc-p129
	lc-p130
	lc-p131
	lc-p132
	lc-p133
	lc-p134
	lc-p135
	lc-p136
	lc-p137
	lc-p138
	lc-p139
	lc-p140
	lc-p141
	lc-p142
	lc-p143
	lc-p144
	lc-p145
	lc-p146
	lc-p147
	lc-p148
	lc-p149
	lc-p150
	lc-p151
	lc-p152
	lc-p153
	lc-p154
	lc-p155
	lc-p156
	lc-p157
	lc-p158
	lc-p159
	lc-p160
	lc-p161
	lc-p162
	lc-p163
	lc-p164
	lc-p165
	lc-p166
	lc-p167
	lc-p168
	lc-p169
	lc-p170
	lc-p171
	lc-p172
	lc-p173
	lc-p174
	lc-p175
	lc-p176
	lc-p177
	lc-p178
	lc-p179
	lc-p180
	lc-p181
	lc-p182
	lc-p183
	lc-p184
	lc-p185
	lc-p186
	lc-p187
	lc-p188
	lc-p189
	lc-p190
	lc-p191
	lc-p192
	z

